Suppr超能文献

在气-液界面下,气泡驱动的中空微马达的高效推进和悬停。

Efficient Propulsion and Hovering of Bubble-Driven Hollow Micromotors underneath an Air-Liquid Interface.

机构信息

School of Environment and Municipal Engineering , Xi'an University of Architecture and Technology , Xi'an 710055 , China.

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics , Chinese Academy of Science , Beijing 100190 , China.

出版信息

Langmuir. 2018 Sep 4;34(35):10426-10433. doi: 10.1021/acs.langmuir.8b02249. Epub 2018 Aug 21.

Abstract

Bubble-driven micromotors have attracted substantial interest due to their remarkable self-motile and cargo-delivering abilities in biomedical or environmental applications. Here, we developed a hollow micromotor that experiences fast self-propulsion underneath an air-liquid interface by periodic bubble growth and collapse. The collapsing of a single microbubble induces a ∼1 m·s impulsive jetting flow that instantaneously pushes the micromotor forward. Unlike previously reported micromotors propelled by the recoiling of bubbles, cavitation-induced jetting further utilizes the energy stored in the bubble to propel the micromotor and thus enhances the energy conversion efficiency by 3 orders of magnitude. Four different modes of propulsion are, for the first time, identified by quantifying the dependence of propulsion strength on microbubble size. Meanwhile, the vertical component of the jetting flow counteracts the buoyancy of the micromotor-bubble dimer and facilitates counterintuitive hovering underneath the air-liquid interface. This work not only enriches the understanding of the propulsion mechanism of bubble-driven micromotors but also gives insight into the physical aspects of cavitation bubble dynamics near the air-liquid interface on the microscale.

摘要

由于在生物医学或环境应用中具有显著的自主运动和货物输送能力,气泡驱动的微马达引起了广泛关注。在这里,我们开发了一种空心微马达,它可以通过周期性的气泡生长和收缩在气液界面下快速自主推进。单个微气泡的崩溃会引起约 1 m·s 的脉冲射流,从而瞬间推动微马达前进。与以前报道的由气泡反冲驱动的微马达不同,空化射流进一步利用气泡中储存的能量来推动微马达,从而将能量转换效率提高了 3 个数量级。通过量化推进强度对微气泡尺寸的依赖性,首次确定了四种不同的推进模式。同时,射流的垂直分量抵消了微马达-气泡二聚体的浮力,有助于在气液界面下实现反直觉的悬停。这项工作不仅丰富了对气泡驱动微马达推进机制的理解,还深入了解了微尺度下气液界面附近空化气泡动力学的物理方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验