Suppr超能文献

相同蛋白识别非相关配体。

The Recognition of Unrelated Ligands by Identical Proteins.

机构信息

Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , California 94158 , United States.

Department of Chemical Biology and Therapeutics & Department of Structural Biology , St. Jude Children's Research Hospital , Memphis , Tennessee 38105 , United States.

出版信息

ACS Chem Biol. 2018 Sep 21;13(9):2522-2533. doi: 10.1021/acschembio.8b00443. Epub 2018 Aug 27.

Abstract

Unrelated ligands, often found in drug discovery campaigns, can bind to the same receptor, even with the same protein residues. To investigate how this might occur, and whether it might be typically possible to find unrelated ligands for the same drug target, we sought examples of topologically unrelated ligands that bound to the same protein in the same site. Seventy-six pairs of ligands, each bound to the same protein (152 complexes total), were considered, classified into three groups. In the first (31 pairs of complexes), unrelated ligands interacted largely with the same pocket residues through different functional groups. In the second group (39 pairs), the unrelated ligand in each pair engaged different residues, though still within the same pocket. The smallest group (6 pairs) contained ligands with different scaffolds but with shared functional groups interacting with the same residues. We found that there are multiple chemically unrelated but physically similar functional groups that can complement any given local protein pocket; when these functional group substitutions are combined within a single molecule, they lead to topologically unrelated ligands that can each well-complement a site. It may be that many active and orthosteric sites can recognize topologically unrelated ligands.

摘要

非相关配体,通常在药物发现过程中被发现,也可以与同一受体结合,即使是相同的蛋白质残基。为了研究这是如何发生的,以及是否有可能为同一药物靶点找到非相关的配体,我们寻找了与同一蛋白质在同一部位结合的拓扑上不相关的配体的例子。考虑了 76 对配体,每个配体都与相同的蛋白质(总共 152 个复合物)结合,分为三组。在第一组(31 对复合物)中,不相关的配体主要通过不同的官能团与相同的口袋残基相互作用。在第二组(39 对)中,每对不相关的配体都与不同的残基结合,但仍在同一口袋内。最小的一组(6 对)包含具有不同支架但具有相同功能基团相互作用的相同残基的配体。我们发现,有多个化学上不相关但物理上相似的功能基团可以补充任何给定的局部蛋白质口袋;当这些功能基团取代在单个分子内结合时,它们会产生拓扑上不相关的配体,每个配体都可以很好地补充一个部位。可能许多活性和正位结合点可以识别拓扑上不相关的配体。

相似文献

1
The Recognition of Unrelated Ligands by Identical Proteins.
ACS Chem Biol. 2018 Sep 21;13(9):2522-2533. doi: 10.1021/acschembio.8b00443. Epub 2018 Aug 27.
2
The Recognition of Identical Ligands by Unrelated Proteins.
ACS Chem Biol. 2015 Dec 18;10(12):2772-84. doi: 10.1021/acschembio.5b00683. Epub 2015 Oct 12.
3
The use of small-molecule structures to complement protein-ligand crystal structures in drug discovery.
Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):240-245. doi: 10.1107/S2059798317000675. Epub 2017 Feb 22.
4
On the importance of composite protein multiple ligand interactions in protein pockets.
J Comput Chem. 2017 Jun 5;38(15):1252-1259. doi: 10.1002/jcc.24523. Epub 2016 Nov 16.
5
Template-Based Method for Conformation Generation and Scoring for Congeneric Series of Ligands.
J Chem Inf Model. 2019 Jun 24;59(6):2690-2701. doi: 10.1021/acs.jcim.9b00032. Epub 2019 May 9.
7
New approaches for computing ligand-receptor binding kinetics.
Curr Opin Struct Biol. 2018 Apr;49:1-10. doi: 10.1016/j.sbi.2017.10.001. Epub 2017 Nov 11.
8
In Silico Target Druggability Assessment: From Structural to Systemic Approaches.
Methods Mol Biol. 2019;1953:63-88. doi: 10.1007/978-1-4939-9145-7_5.
10
Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2.
J Comput Aided Mol Des. 2018 Jan;32(1):151-162. doi: 10.1007/s10822-017-0062-1. Epub 2017 Sep 14.

引用本文的文献

1
Reversible Covalent Inhibition─Desired Covalent Adduct Formation by Mass Action.
ACS Chem Biol. 2024 Apr 19;19(4):824-838. doi: 10.1021/acschembio.3c00805. Epub 2024 Apr 3.
3
Mining the Protein Data Bank to inspire fragment library design.
Front Chem. 2023 Feb 10;11:1089714. doi: 10.3389/fchem.2023.1089714. eCollection 2023.

本文引用的文献

1
D dopamine receptor high-resolution structures enable the discovery of selective agonists.
Science. 2017 Oct 20;358(6361):381-386. doi: 10.1126/science.aan5468.
2
Discovery of new GPCR ligands to illuminate new biology.
Nat Chem Biol. 2017 Nov;13(11):1143-1151. doi: 10.1038/nchembio.2490. Epub 2017 Oct 18.
3
ProteinsPlus: a web portal for structure analysis of macromolecules.
Nucleic Acids Res. 2017 Jul 3;45(W1):W337-W343. doi: 10.1093/nar/gkx333.
4
Structural Isosteres of Phosphate Groups in the Protein Data Bank.
J Chem Inf Model. 2017 Mar 27;57(3):499-516. doi: 10.1021/acs.jcim.6b00519. Epub 2017 Mar 13.
5
6
Structure-based discovery of opioid analgesics with reduced side effects.
Nature. 2016 Sep 8;537(7619):185-190. doi: 10.1038/nature19112. Epub 2016 Aug 17.
7
Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs.
J Med Chem. 2016 Aug 25;59(16):7598-616. doi: 10.1021/acs.jmedchem.6b00698. Epub 2016 Aug 5.
8
Interaction Analysis of FABP4 Inhibitors by X-ray Crystallography and Fragment Molecular Orbital Analysis.
ACS Med Chem Lett. 2016 Feb 16;7(4):435-9. doi: 10.1021/acsmedchemlett.6b00040. eCollection 2016 Apr 14.
9
Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides.
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4711-6. doi: 10.1073/pnas.1603735113. Epub 2016 Apr 12.
10
Structure Property Relationships of Carboxylic Acid Isosteres.
J Med Chem. 2016 Apr 14;59(7):3183-203. doi: 10.1021/acs.jmedchem.5b01963. Epub 2016 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验