Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
University of Ioannina, Department of Physics, P.O. Box 1186, 45110 Ioannina, Greece.
Phys Rev Lett. 2018 Jul 27;121(4):048002. doi: 10.1103/PhysRevLett.121.048002.
The work required to detach microparticles from fluid interfaces depends on the shape of the liquid meniscus. However, measuring the capillary force on a single microparticle and simultaneously imaging the shape of the liquid meniscus has not yet been accomplished. To correlate force and shape, we combined a laser scanning confocal microscope with a colloidal probe setup. While moving a hydrophobic microsphere (radius 5-10 μm) in and out of a 2-5 μm thick glycerol film, we simultaneously measured the force and imaged the shape of the liquid meniscus. In this way we verified the fundamental equations [D. F. James, J. Fluid Mech. 63, 657 (1974)JFLSA70022-112010.1017/S0022112074002126; A. D. Scheludko, A. D. Nikolov, Colloid Polymer Sci. 253, 396 (1975)] that describe the adhesion of particles in flotation, deinking of paper, the stability of Pickering emulsions and particle-stabilized foams. Comparing experimental results with theory showed, however, that the receding contact angle has to be applied, which can be much lower than the static contact angle obtained right after jump in of the particle.
从流体界面上分离微粒所需的功取决于液体弯月面的形状。然而,测量单个微粒上的毛细力并同时对液体弯月面的形状进行成像尚未实现。为了关联力和形状,我们将激光扫描共焦显微镜与胶体探针装置相结合。在将疏水性微球(半径 5-10μm)进出 2-5μm 厚的甘油膜的过程中,我们同时测量力并对液体弯月面的形状进行成像。通过这种方式,我们验证了描述浮选、纸张脱墨、Pickering 乳液和颗粒稳定泡沫中颗粒附着的基本方程[D. F. James,J. Fluid Mech. 63, 657 (1974)JFLSA70022-112010.1017/S0022112074002126;A. D. Scheludko,A. D. Nikolov,Colloid Polymer Sci. 253, 396 (1975)]。然而,将实验结果与理论进行比较表明,必须应用后退接触角,后退接触角可能远低于颗粒跳入后的静态接触角。