Stenczel Tamás Károly, Sinai Ádám, Novák Zoltán, Stirling András
Török Ignác Secondary School, Gödöllő, Hungary, Present address: St Catharine's College, Cambridge CB2 1RL, UK.
ELTE "Lendület" Laboratory of Catalysis and Organic Synthesis, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary.
Beilstein J Org Chem. 2018 Jul 12;14:1743-1749. doi: 10.3762/bjoc.14.148. eCollection 2018.
We present a computational mechanistic study on the copper(III)-catalysed carboarylation-ring closure reactions leading to the formation of functionalised heterocycles. We have performed DFT calculations along selected routes and compared their free energy profiles. The calculations considered two viable options for the underlying mechanism which differ in the order of the oxazoline ring formation and the aryl transfer steps. In our model transformation, it was found that the reaction generally features the aryl transfer-ring closing sequence and this sequence shows very limited sensitivity to the variation of the substituent of the reactants. On the basis of the mechanism the origin of the stereoselectivity is ascribed to the interaction of the Cu ion with the oxazoline oxygen driving the ring-closure step selectively.
我们对铜(III)催化的碳芳基化-环化反应进行了计算机理研究,该反应可生成功能化杂环。我们沿着选定的路线进行了密度泛函理论(DFT)计算,并比较了它们的自由能剖面图。计算考虑了潜在机理的两种可行选择,这两种选择在恶唑啉环形成和芳基转移步骤的顺序上有所不同。在我们的模型转化中,发现该反应通常具有芳基转移-环化序列,并且该序列对反应物取代基的变化非常不敏感。基于该机理,立体选择性的起源归因于铜离子与恶唑啉氧的相互作用,该相互作用选择性地驱动环化步骤。