University of Michigan, Ann Arbor, Michigan.
Michigan State University, East Lansing, Michigan.
Int J Eat Disord. 2018 Jul;51(7):730-740. doi: 10.1002/eat.22902. Epub 2018 Aug 21.
Emotional eating has been linked to ovarian hormone functioning, but no studies to-date have considered the role of brain function. This knowledge gap may stem from methodological challenges: Data are heterogeneous, violating assumptions of homogeneity made by between-subjects analyses. The primary aim of this paper is to describe an innovative within-subjects analysis that models heterogeneity and has potential for filling knowledge gaps in eating disorder research. We illustrate its utility in an application to pilot neuroimaging, hormone, and emotional eating data across the menstrual cycle.
Group iterative multiple model estimation (GIMME) is a person-specific network approach for estimating sample-, subgroup-, and individual-level connections between brain regions. To illustrate its potential for eating disorder research, we apply it to pilot data from 10 female twins (N = 5 pairs) discordant for emotional eating and/or anxiety, who provided two resting state fMRI scans and hormone assays. We then demonstrate how the multimodal data can be linked in multilevel models.
GIMME generated person-specific neural networks that contained connections common across the sample, shared between co-twins, and unique to individuals. Illustrative analyses revealed positive relations between hormones and default mode connectivity strength for control twins, but no relations for their co-twins who engage in emotional eating or who had anxiety.
This paper showcases the value of person-specific neuroimaging network analysis and its multimodal associations in the study of heterogeneous biopsychosocial phenomena, such as eating behavior.
情绪性进食与卵巢激素功能有关,但迄今为止尚无研究考虑大脑功能的作用。这一知识空白可能源于方法学上的挑战:数据存在异质性,违反了组间分析所假设的同质性。本文的主要目的是描述一种创新的组内分析方法,该方法可对异质性进行建模,并有潜力填补进食障碍研究中的知识空白。我们将通过对月经周期中神经影像学、激素和情绪性进食数据的初步研究来展示其应用。
群体迭代多重模型估计(GIMME)是一种针对个体的网络方法,用于估计大脑区域之间的个体、亚组和个体水平的连接。为了说明其在进食障碍研究中的潜在应用,我们将其应用于 10 对存在情绪性进食和/或焦虑症的女性双胞胎(N=5 对)的初步数据中,这些双胞胎提供了两次静息态 fMRI 扫描和激素检测。然后,我们展示了如何在多层次模型中链接多模态数据。
GIMME 生成了个体特异性的神经网络,其中包含样本中共同的连接、双胞胎间共享的连接以及个体特有的连接。说明性分析显示,对于对照组双胞胎,激素与默认模式连接强度呈正相关,但对于进行情绪性进食或焦虑的双胞胎则没有相关性。
本文展示了个体神经影像学网络分析及其在研究异质的生物心理社会现象(如进食行为)中的多模态关联的价值。