School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
Laboratory of Computational Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Chem Phys. 2018 Aug 21;149(7):072323. doi: 10.1063/1.5027580.
Recent molecular modeling methods using Markovian descriptions of conformational states of biomolecular systems have led to powerful analysis frameworks that can accurately describe their complex dynamical behavior. In conjunction with enhanced sampling methods, such as replica exchange molecular dynamics (REMD), these frameworks allow the systematic and accurate extraction of transition probabilities between the corresponding states, in the case of Markov state models, and of statistically-optimized transition rates, in the case of the corresponding coarse master equations. However, applying automatically such methods to large molecular dynamics (MD) simulations, with explicit water molecules, remains limited both by the initial ability to identify good candidates for the underlying Markovian states and by the necessity to do so using good collective variables as reaction coordinates that allow the correct counting of inter-state transitions at various lag times. Here, we show that, in cases when representative molecular conformations can be identified for the corresponding Markovian states, and thus their corresponding collective evolution of atomic positions can be calculated along MD trajectories, one can use them to build a new type of simple collective variable, which can be particularly useful in both the correct state assignment and in the subsequent accurate counting of inter-state transition probabilities. In the case of the ubiquitously used root-mean-square deviation (RMSD) of atomic positions, we introduce the relative RMSD (RelRMSD) measure as a good reaction coordinate candidate. We apply this method to the analysis of REMD trajectories of amyloid-forming diphenylalanine (FF) peptides-a system with important nanotechnology and biomedical applications due to its self-assembling and piezoelectric properties-illustrating the use of RelRMSD in extracting its temperature-dependent intrinsic kinetics, without assumptions on the functional form (e.g., Arrhenius or not) of the underlying conformational transition rates. The RelRMSD analysis enables as well a more objective assessment of the convergence of the REMD simulations. This type of collective variable may be generalized to other observables that could accurately capture conformational differences between the underlying Markov states (e.g., distance RMSD, the fraction of native contacts, etc.).
最近,使用生物分子系统构象状态的马尔可夫描述的分子建模方法已经导致了强大的分析框架,可以准确描述它们的复杂动力学行为。与增强采样方法(例如,复制交换分子动力学(REMD))结合使用,这些框架允许系统地准确提取相应状态之间的跃迁概率,在马尔可夫状态模型的情况下,以及在相应的粗粒主方程的情况下,统计优化的跃迁速率。然而,在具有显式水分子的情况下,自动将这些方法应用于大型分子动力学(MD)模拟仍然受到初始识别潜在马尔可夫状态的良好候选者的能力的限制,并且需要使用良好的集体变量作为反应坐标,以允许在各种滞后时间正确计数状态间跃迁。在这里,我们表明,在可以为相应的马尔可夫状态识别代表性分子构象的情况下,并且因此可以沿着 MD 轨迹计算它们相应的原子位置的集体演化,那么可以使用它们来构建一种新型的简单集体变量,它在正确的状态分配和随后的准确计数状态间跃迁概率方面都特别有用。在普遍使用的原子位置均方根偏差(RMSD)的情况下,我们引入相对 RMSD(RelRMSD)度量作为良好的反应坐标候选者。我们将该方法应用于淀粉样形成二苯丙氨酸(FF)肽的 REMD 轨迹分析-由于其自组装和压电特性,该系统在纳米技术和生物医学应用中具有重要意义-说明了在不依赖于潜在构象转变率的功能形式(例如,阿累尼乌斯或不)的情况下,使用 RelRMSD 提取其温度依赖性固有动力学的情况。RelRMSD 分析还可以更客观地评估 REMD 模拟的收敛性。这种类型的集体变量可以推广到其他可以准确捕捉潜在马尔可夫状态之间构象差异的观测值(例如,距离 RMSD,天然接触分数等)。