Manhart Angelika
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012, USA.
J Math Biol. 2019 Feb;78(3):655-682. doi: 10.1007/s00285-018-1287-x. Epub 2018 Aug 28.
Hyperbolic transport-reaction equations are abundant in the description of movement of motile organisms. Here, we focus on a system of four coupled transport-reaction equations that arises from an age-structuring of a species of turning individuals. By modeling how the behavior depends on the time since the last reversal, we introduce a memory effect. The highlight consists of the explicit construction and characterization of counter-propagating traveling waves, patterns which have been observed in bacterial colonies. Stability analysis reveals conditions for the wave formation as well as pulsating-in-time spatially constant solutions.
双曲型输运 - 反应方程在描述能动生物的运动方面大量存在。在此,我们关注一个由具有转向个体的物种的年龄结构产生的四个耦合输运 - 反应方程组。通过对行为如何依赖于自上次反转以来的时间进行建模,我们引入了一种记忆效应。重点在于反向传播行波的显式构造和特征描述,这种模式已在细菌菌落中观察到。稳定性分析揭示了波形成的条件以及随时间脉动的空间常数解。