Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, 112, Taiwan.
Chembiochem. 2018 Nov 16;19(22):2395-2402. doi: 10.1002/cbic.201800378. Epub 2018 Oct 18.
Transketolase (TK) catalyzes a reversible transfer of a two-carbon (C ) unit between phosphoketose donors and phosphoaldose acceptors, for which the group-transfer reaction that follows a one- or two-electron mechanism and the force that breaks the C2"-C3" bond of the ketose donors remain unresolved. Herein, we report ultrahigh-resolution crystal structures of a TK (TKps) from Pichia stipitis in previously undiscovered intermediate states and support a diradical mechanism for a reversible group-transfer reaction. In conjunction with MS, NMR spectroscopy, EPR and computational analyses, it is concluded that the enzyme-catalyzed non-Kekulé diradical cofactor brings about the C2"-C3" bond cleavage/formation for the C -unit transfer reaction, for which suppression of activation energy and activation and destabilization of enzymatic intermediates are facilitated.
转酮醇酶 (TK) 催化两个碳原子 (C) 单元在磷酸酮糖供体和磷酸醛糖受体之间的可逆转移,对于遵循单电子或双电子机制的基团转移反应以及打破酮糖供体的 C2"-C3" 键的力,仍然没有得到解决。在此,我们报告了来自酿酒酵母的 TK(TKps)在以前未发现的中间状态的超高分辨率晶体结构,并支持可逆基团转移反应的自由基机制。结合 MS、NMR 光谱、EPR 和计算分析,得出结论,酶催化的非共振自由基辅因子为 C -单元转移反应带来了 C2"-C3" 键的断裂/形成,从而促进了活化能的抑制以及酶中间产物的活化和失稳。