Suppr超能文献

在没有核苷酸的情况下,ATP 水解失活的 Walker B 突变扰乱了大肠杆菌 ClpA 的自我组装能量。

ATP hydrolysis inactivating Walker B mutation perturbs E. coli ClpA self-assembly energetics in the absence of nucleotide.

机构信息

University of Alabama at Birmingham, Chemistry Department, Birmingham, AL, United States.

University of Alabama at Birmingham, Chemistry Department, Birmingham, AL, United States.

出版信息

Biophys Chem. 2018 Nov;242:6-14. doi: 10.1016/j.bpc.2018.08.005. Epub 2018 Aug 27.

Abstract

E. coli ClpA is an AAA+ (ATPase Associated with diverse cellular Activities) chaperone that catalyzes the ATP-dependent unfolding and translocation of substrate proteins for the purposes of proper proteome maintenance. Biologically active ClpA hexamers contain two nucleotide binding domains (NBD) per protomer, D1 and D2. Despite extensive study, complete understanding of how the twelve NBDs within a ClpA hexamer coordinate ATP binding and hydrolysis to polypeptide translocation is currently lacking. To examine nucleotide binding and coordination at D1 and D2, ClpA Walker B variants deficient in ATP hydrolysis at one or both NBDs have been employed in various studies. In the presence of ATP, it is widely assumed that ClpA Walker B variants are entirely hexameric. However, a thermodynamically rigorous examination of the self-assembly mechanism has not been obtained. Differences in the assembly due to the mutation can be misattributed to the active NBD, leading to potential misinterpretations of kinetic studies. Here we use sedimentation velocity studies to quantitatively examine the self-assembly mechanism of ClpA Walker B variants deficient in ATP hydrolysis at D1, D2, and both NBDs. We found that the Walker B mutations had clear, if modest, effects on the assembly. Most notably, the Walker B mutation stabilizes the population of a larger oligomer in the absence of nucleotide, that is not present for analogous concentrations of wild type ClpA. Our results indicate that Walker B mutants, widely used in studies of AAA+ family proteins, require additional characterization as the mutation affects not only ATP hydrolysis, but also the ligand linked assembly of these complexes. This linkage must be considered in investigations of unfolding or other ATP dependent functions.

摘要

大肠杆菌 ClpA 是一种 AAA+(与多种细胞活动相关的 ATP 酶)伴侣,可催化底物蛋白的 ATP 依赖性展开和易位,以维持蛋白质组的正常功能。具有生物活性的 ClpA 六聚体每个蛋白包含两个核苷酸结合域(NBD),即 D1 和 D2。尽管进行了广泛的研究,但目前仍不完全了解 ClpA 六聚体中的 12 个 NBD 如何协调 ATP 结合和水解以进行多肽易位。为了研究 D1 和 D2 的核苷酸结合和协调,在各种研究中使用了在一个或两个 NBD 中缺乏 ATP 水解的 ClpA Walker B 变体。在 ATP 存在的情况下,人们普遍认为 ClpA Walker B 变体完全是六聚体。然而,尚未获得对自组装机制的热力学严格检查。由于突变导致的组装差异可能归因于活性 NBD,从而导致对动力学研究的潜在误解。在这里,我们使用沉降速度研究定量检查了在 D1、D2 和两个 NBD 中缺乏 ATP 水解的 ClpA Walker B 变体的自组装机制。我们发现 Walker B 突变对组装有明显但适度的影响。最值得注意的是,Walker B 突变在没有核苷酸的情况下稳定了较大寡聚物的群体,而对于类似浓度的野生型 ClpA 则不存在。我们的结果表明,广泛用于 AAA+ 家族蛋白研究的 Walker B 突变体需要进一步表征,因为突变不仅影响 ATP 水解,还影响这些复合物的配体连接组装。在研究解折叠或其他依赖 ATP 的功能时,必须考虑这种联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验