ACT Pathology, Canberra Hospital, Canberra, ACT, Australia; Medical School, Australian National University, Woden, ACT, Australia.
Monarch Institute, Melbourne, VIC, Australia.
Lancet Planet Health. 2018 Sep;2(9):e398-e405. doi: 10.1016/S2542-5196(18)30186-4.
Understanding of the factors driving global antimicrobial resistance is limited. We analysed antimicrobial resistance and antibiotic consumption worldwide versus many potential contributing factors.
Using three sources of data (ResistanceMap, the WHO 2014 report on antimicrobial resistance, and contemporary publications), we created two global indices of antimicrobial resistance for 103 countries using data from 2008 to 2014: Escherichia coli resistance-the global average prevalence of E coli bacteria that were resistant to third-generation cephalosporins and fluoroquinolones, and aggregate resistance-the combined average prevalence of E coli and Klebsiella spp resistant to third-generation cephalosporins, fluoroquinolones, and carbapenems, and meticillin-resistant Staphylococcus aureus. Antibiotic consumption data were obtained from the IQVIA MIDAS database. The World Bank DataBank was used to obtain data for governance, education, gross domestic product (GDP) per capita, health-care spending, and community infrastructure (eg, sanitation). A corruption index was derived using data from Transparency International. We examined associations between antimicrobial resistance and potential contributing factors using simple correlation for a univariate analysis and a logistic regression model for a multivariable analysis.
In the univariate analysis, GDP per capita, education, infrastructure, public health-care spending, and antibiotic consumption were all inversely correlated with the two antimicrobial resistance indices, whereas higher temperatures, poorer governance, and the ratio of private to public health expenditure were positively correlated. In the multivariable regression analysis (confined to the 73 countries for which antibiotic consumption data were available) considering the effect of changes in indices on E coli resistance (R 0·54) and aggregate resistance (R 0·75), better infrastructure (p=0·014 and p=0·0052) and better governance (p=0·025 and p<0·0001) were associated with lower antimicrobial resistance indices. Antibiotic consumption was not significantly associated with either antimicrobial resistance index in the multivariable analysis (p=0·64 and p=0·070).
Reduction of antibiotic consumption will not be sufficient to control antimicrobial resistance because contagion-the spread of resistant strains and resistance genes-seems to be the dominant contributing factor. Improving sanitation, increasing access to clean water, and ensuring good governance, as well as increasing public health-care expenditure and better regulating the private health sector are all necessary to reduce global antimicrobial resistance.
None.
人们对抗菌药物耐药性的驱动因素了解有限。我们分析了全球范围内的抗菌药物耐药性和抗生素使用情况与许多潜在影响因素的关系。
利用三种数据来源(ResistanceMap、世界卫生组织 2014 年抗菌药物耐药性报告和当代出版物),我们使用 2008 年至 2014 年的数据,为 103 个国家创建了两种抗菌药物耐药性全球指数:大肠埃希菌耐药性——全球范围内对第三代头孢菌素和氟喹诺酮类药物耐药的大肠埃希菌的流行率;综合耐药性——大肠埃希菌和肺炎克雷伯菌对第三代头孢菌素、氟喹诺酮类药物和碳青霉烯类药物的耐药率的综合平均流行率,以及耐甲氧西林金黄色葡萄球菌。抗生素使用数据来自 IQVIA MIDAS 数据库。世界银行数据库用于获取治理、教育、国内生产总值(GDP)人均、医疗保健支出和社区基础设施(如卫生设施)方面的数据。利用透明国际的数据得出腐败指数。我们使用单变量分析的简单相关关系和多变量分析的逻辑回归模型,考察了抗菌药物耐药性与潜在影响因素之间的关系。
在单变量分析中,人均 GDP、教育、基础设施、公共医疗保健支出和抗生素使用与两种抗菌药物耐药性指数均呈负相关,而较高的温度、较差的治理和公私医疗支出比例与指数呈正相关。在多变量回归分析(仅限于提供抗生素使用数据的 73 个国家)中,考虑到指数变化对大肠埃希菌耐药性(R 0.54)和综合耐药性(R 0.75)的影响,更好的基础设施(p=0.014 和 p=0.0052)和更好的治理(p=0.025 和 p<0.0001)与较低的抗菌药物耐药性指数相关。在多变量分析中,抗生素使用与两种抗菌药物耐药性指数均无显著相关性(p=0.64 和 p=0.070)。
减少抗生素使用量不足以控制抗菌药物耐药性,因为耐药菌和耐药基因的传播似乎是主要的影响因素。改善卫生条件、增加清洁水供应、确保良好治理,以及增加公共医疗保健支出和更好地规范私营医疗部门,都是减少全球抗菌药物耐药性的必要措施。
减少抗生素使用量不足以控制抗菌药物耐药性,因为耐药菌和耐药基因的传播似乎是主要的影响因素。改善卫生条件、增加清洁水供应、确保良好治理,以及增加公共医疗保健支出和更好地规范私营医疗部门,都是减少全球抗菌药物耐药性的必要措施。
无资金支持。