Department of Materials Science and Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States.
ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32313-32322. doi: 10.1021/acsami.8b09638. Epub 2018 Sep 17.
Hybrid capacitive deionization (HCDI) is a derivative of capacitive deionization (CDI) method for water desalination, in which one carbon electrode is replaced with a redox-active intercalation electrode, resulting in substantial improvements in ion removal capacity over traditional CDI. The search for high-performing intercalation host compounds is ongoing. In this study, two-layered manganese oxides (LMOs), with sodium (Na-birnessite) and magnesium (Mg-buserite) ions stabilizing the interlayer region, were for the first time evaluated as HCDI electrodes for the removal of ions from NaCl and MgCl solutions to understand structural/compositional dynamics and electrochemical stability of LMO electrodes over extended cycling. Both materials demonstrated excellent initial ion removal performance with the highest capacities of 37.2 mg g (637 μmol g) exhibited by Mg-buserite in NaCl solution and 50.2 mg g (527 μmol g) exhibited by Na-birnessite in MgCl solution. The performance decay observed over the course of 200 ion adsorption/ion release cycles was attributed to two major phenomena: oxidation of carbon electrode and evolution of the structure/composition of LMO electrodes. The latter involves disorder in stacking of Mn-O layers and changes in the interlayer spacing/interlayer ions reflecting the composition of the solution being desalinated. This work highlights the importance of understanding the interactions between the HCDI electrodes and solutions containing different ions and the structural analysis of redox-active material in intercalation electrodes over the course of operation for gaining insight into the fundamental processes governing desalination performance and developing next-generation HCDI systems with long-term electrochemical stability.
混合电容去离子化 (HCDI) 是一种用于海水淡化的电容去离子化 (CDI) 方法的衍生物,其中一个碳电极被氧化还原活性嵌入电极取代,从而大大提高了传统 CDI 的离子去除能力。寻找高性能的嵌入主体化合物仍在进行中。在这项研究中,首次评估了具有钠离子 (Na-钠锰矿) 和镁离子 (Mg-镁水羟锰矿) 稳定层间区域的两层状锰氧化物 (LMO) 作为 HCDI 电极,以从 NaCl 和 MgCl 溶液中去除离子,以了解 LMO 电极在扩展循环中的结构/组成动力学和电化学稳定性。两种材料都表现出优异的初始离子去除性能,其中 Mg-buserite 在 NaCl 溶液中表现出最高的容量为 37.2 mg g (637 μmol g),Na-birnessite 在 MgCl 溶液中表现出最高的容量为 50.2 mg g (527 μmol g)。在 200 次离子吸附/离子释放循环过程中观察到的性能下降归因于两个主要现象:碳电极的氧化和 LMO 电极的结构/组成的演变。后者涉及 Mn-O 层堆叠的无序和层间间距/层间离子的变化,反映了被淡化溶液的组成。这项工作强调了理解 HCDI 电极与含有不同离子的溶液之间的相互作用以及在操作过程中对嵌入电极中的氧化还原活性材料进行结构分析的重要性,以便深入了解控制脱盐性能的基本过程并开发具有长期电化学稳定性的下一代 HCDI 系统。