Suppr超能文献

基于肿瘤深度和长度的原发肿瘤评分可预测食管鳞状细胞癌的预后。

Primary Tumor Score Based on Tumor Depth and Length Predicts Prognosis in Esophageal Squamous Cell Carcinoma.

作者信息

Arigami Takaaki, Uchikado Yasuto, Omoto Itaru, Sasaki Ken, Kita Yoshiaki, Owaki Tetsuhiro, Yanagita Shigehiro, Mori Shinichiro, Kurahara Hiroshi, Okumura Hiroshi, Maemura Kosei, Natsugoe Shoji

机构信息

Department of Onco-biological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan

Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.

出版信息

Anticancer Res. 2018 Sep;38(9):5447-5452. doi: 10.21873/anticanres.12876.

Abstract

AIM

To examine the depth of tumor invasion and tumor length and assess the clinical impact of the primary tumor score (PTS), based on a combination of tumor invasion and tumor length, in patients with esophageal squamous cell carcinoma (ESCC).

PATIENTS AND METHODS

A total of 237 patients with ESCC were classified into three PTS groups based on cut-off values for deeper tumor invasion (pT2-T4) and greater tumor length (≥44 mm). A PTS of 2 indicated the presence of both of these abnormalities, 1 indicated one of these abnormalities, and 0 indicated neither abnormality.

RESULTS

PTS was significantly positively correlated with depth of tumor invasion, lymph node metastasis, lymphovascular invasion, and stage (all p<0.001). The prognosis differed significantly among the three groups based on PTS (p<0.0001). Multivariate analysis demonstrated that PTS was an independent prognostic factor (p=0.0004).

CONCLUSION

PTS has a clinical utility as a prognostic predictor in patients with ESCC.

摘要

目的

探讨食管鳞状细胞癌(ESCC)患者肿瘤浸润深度和肿瘤长度,并评估基于肿瘤浸润和肿瘤长度的原发性肿瘤评分(PTS)的临床影响。

患者与方法

根据更深的肿瘤浸润(pT2 - T4)和更长的肿瘤长度(≥44 mm)的临界值,将237例ESCC患者分为三个PTS组。PTS为2表示存在这两种异常,1表示存在其中一种异常,0表示不存在任何异常。

结果

PTS与肿瘤浸润深度、淋巴结转移、淋巴管浸润和分期均呈显著正相关(均p<0.001)。基于PTS的三组患者预后差异显著(p<0.0001)。多因素分析表明,PTS是一个独立的预后因素(p = 0.0004)。

结论

PTS作为ESCC患者的预后预测指标具有临床应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验