Chadwick Helen, Gutiérrez-González Ana, Migliorini Davide, Beck Rainer D, Kroes Geert-Jan
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
J Phys Chem C Nanomater Interfaces. 2018 Aug 30;122(34):19652-19660. doi: 10.1021/acs.jpcc.8b05887. Epub 2018 Jul 31.
The dissociation of methane on transition metal surfaces is not only of fundamental interest but also of industrial importance as it represents a rate-controlling step in the steam-reforming reaction used commercially to produce hydrogen. Recently, a specific reaction parameter functional (SRP32-vdW) has been developed, which describes the dissociative chemisorption of CHD at normal incidence on Ni(111), Pt(111), and Pt(211) within chemical accuracy (4.2 kJ/mol). Here, we further test the validity of this functional by comparing the initial sticking coefficients (), obtained from ab-initio molecular dynamics calculations run using this functional, with those measured with the King and Wells method at different angles of incidence for CHD dissociation on Pt(211). The two sets of data are in good agreement, demonstrating that the SRP32-vdW functional also accurately describes CHD dissociation at off-normal angles of incidence. When the direction of incidence is perpendicular to the step edges, an asymmetry is seen in the reactivity with respect to the surface normal, with being higher when the molecule is directed toward the (100) step rather than the (111) terrace. Although there is a small shadowing effect, the trends in can be attributed to different activation barriers for different surface sites, which in turn is related to the generalized co-ordination numbers of the surface atom to which the dissociating molecule is adsorbed in the transition state. Consequently, most reactivity is seen on the least co-ordinated step atoms at all angles of incidence.
甲烷在过渡金属表面的解离不仅具有重要的基础研究意义,还具有工业重要性,因为它是商业上用于生产氢气的蒸汽重整反应中的一个速率控制步骤。最近,已开发出一种特定反应参数泛函(SRP32-vdW),它能在化学精度(4.2 kJ/mol)范围内描述CHD在垂直入射时在Ni(111)、Pt(111)和Pt(211)上的解离化学吸附。在此,我们通过比较使用该泛函进行从头算分子动力学计算得到的初始 sticking 系数()与用 King 和 Wells 方法在不同入射角下测量的Pt(211)上CHD解离的初始 sticking 系数,进一步测试该泛函的有效性。两组数据吻合良好,表明SRP32-vdW泛函也能准确描述非垂直入射角下的CHD解离。当入射方向垂直于台阶边缘时,相对于表面法线方向的反应性存在不对称性,当分子指向(100)台阶而非(111)平台时, 更高。尽管存在小的阴影效应,但 的趋势可归因于不同表面位点的不同活化能垒,这又与过渡态中解离分子吸附的表面原子的广义配位数有关。因此,在所有入射角下,反应性主要出现在配位最少的台阶原子上。