Mons Cécile, Botzanowski Thomas, Nikolaev Anton, Hellwig Petra, Cianférani Sarah, Lescop Ewen, Bouton Cécile, Golinelli-Cohen Marie-Pierre
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg , France.
Biochemistry. 2018 Sep 25;57(38):5616-5628. doi: 10.1021/acs.biochem.8b00777. Epub 2018 Sep 11.
Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, we demonstrated the involvement of mNT in a specific cytosolic pathway dedicated to the reactivation of oxidatively damaged cytosolic aconitase by cluster transfer. In vitro studies using apo-ferredoxin (FDX) reveal that mNT uses an Fe-based redox switch mechanism to regulate the transfer of its cluster. Using the "gold standard" cluster recipient protein, FDX, we show that this transfer is direct and that only one of the two mNT clusters is transferred when the second one is decomposed. Combining complementary biophysical and biochemical approaches, we show that pH affects both the sensitivity of the cluster to O and dimer stability. Around physiological cytosolic pH, the ability of mNT to transfer its cluster is tightly regulated by the pH. Finally, mNT is extremely resistant to HO compared to ISCU and SufB, two other Fe-S cluster transfer proteins, which is consistent with its involvement in a repair pathway of stress-damaged Fe-S proteins. Taken together, our results suggest that the ability of mNT to transfer its cluster to recipient proteins is not only controlled by the redox state of its cluster but also tightly modulated by the pH of the cytosol. We propose that when pathophysiological conditions such as cancer and neurodegenerative diseases dysregulate cellular pH homeostasis, this pH-dependent regulation of mNT is lost, as is the regulation of cellular pathways under the control of mNT.
人类线粒体铁硫蛋白(mNT)是首个被鉴定出的哺乳动物线粒体外膜铁硫蛋白。最近,我们证明了mNT参与了一条特定的胞质途径,该途径通过簇转移致力于重新激活氧化损伤的胞质乌头酸酶。使用脱辅基铁氧还蛋白(FDX)进行的体外研究表明,mNT利用基于铁的氧化还原开关机制来调节其簇的转移。使用“金标准”簇受体蛋白FDX,我们表明这种转移是直接的,并且当第二个mNT簇分解时,只有两个簇中的一个会被转移。结合互补的生物物理和生化方法,我们表明pH值会影响簇对氧气的敏感性以及二聚体稳定性。在生理胞质pH值附近,mNT转移其簇的能力受到pH值的严格调控。最后,与另外两种铁硫簇转移蛋白ISCU和SufB相比,mNT对过氧化氢具有极强的抗性,这与其参与应激损伤的铁硫蛋白修复途径一致。综上所述,我们的结果表明,mNT将其簇转移至受体蛋白的能力不仅受其簇的氧化还原状态控制,还受到胞质pH值的严格调节。我们提出,当诸如癌症和神经退行性疾病等病理生理状况破坏细胞pH稳态时,mNT的这种pH依赖性调节会丧失,受mNT控制的细胞途径的调节也会丧失。