Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
Nanoscale. 2018 Sep 27;10(37):17435-17455. doi: 10.1039/c8nr04842h.
Developing high-performance lithium ion batteries (LIBs) requires optimization of every battery component. Currently, the main problems lie in the mismatch of electrode capacities, especially the excessively low capacity of cathodes compared with that of anodes. Due to the anisotropy of the crystal structure, different crystal planes play different roles in the transmission of lithium ions. Among these, the {010} facets of layered-structure materials, the (110) planes of spinel cathodes and the (010) planes of olivine cathodes can provide open surface structures, which furnish express channels for the rapid and efficient transmission of lithium ions, leading to enhanced rate performance. However, due to the high-energy surfaces of these crystal planes, they tend to disappear in the synthetic process, forming thermodynamic equilibrium products dominated by low-energy and electrochemically-inactive planes. From the structure design of the material itself, preparing functional materials with specific morphologies and crystal structures is considered to be the most effective way to improve the cyclability and rate performance of LIB cathodes. In this review, we highlight the latest developments in selectively exposing the crystal planes of LIB cathode materials. The synthetic method, the corresponding electrochemical performance, especially the rate capability, and the growth mechanism have been systematically summarized for layered-structure cathodes of LiCoO2, LiNixCoyMn1-x-yO2 and Li2MnO3·LiMO2, spinel cathodes of LiMn2O4 and LiNi0.5Mn1.5O4, and olivine cathodes of LiFePO4. This in-depth discussion and understanding is beneficial for the rational design of well-performing LIB cathodes and can provide direction and perspectives for future work.
开发高性能锂离子电池 (LIB) 需要优化电池的每个组件。目前,主要问题在于电极容量不匹配,尤其是阴极的容量与阳极相比过低。由于晶体结构的各向异性,不同的晶体平面在锂离子的传输中起着不同的作用。在这些晶体平面中,层状结构材料的 {010} 面、尖晶石阴极的 (110) 面和橄榄石阴极的 (010) 面可以提供开放的表面结构,为锂离子的快速高效传输提供了通道,从而提高了倍率性能。然而,由于这些晶体平面具有较高的表面能,它们在合成过程中往往会消失,形成由低能和电化学惰性平面主导的热力学平衡产物。从材料本身的结构设计来看,制备具有特定形貌和晶体结构的功能材料被认为是提高 LIB 阴极循环性能和倍率性能的最有效途径。在这篇综述中,我们重点介绍了选择性暴露 LIB 阴极材料晶体平面的最新进展。我们系统地总结了 LiCoO2、LiNixCoyMn1-x-yO2 和 Li2MnO3·LiMO2 层状阴极、LiMn2O4 和 LiNi0.5Mn1.5O4 尖晶石阴极以及 LiFePO4 橄榄石阴极的合成方法、相应的电化学性能,特别是倍率性能和生长机制。这种深入的讨论和理解有助于合理设计高性能的 LIB 阴极,并为未来的工作提供方向和视角。