Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China.
Phys Chem Chem Phys. 2018 Sep 26;20(37):24201-24209. doi: 10.1039/c8cp02568a.
Temperature-programmed desorption (TPD) is one of the most straightforward surface science experiments for the determination of the thermodynamic and kinetic parameters of a reaction. In our previous study (J. Phys. Chem. C, 2013, 117, 6136-6142), we proposed a model combining DFT methods with microkinetics to investigate the TPD spectra of NH3 and H2O on the RuO2(110) surface. Although our model predicted both the physisorption and chemisorption peaks of both adsorbates in agreement with the experimental TPD spectra, it failed to explain the region between the physisorption and chemisorption areas and underestimated the intensity of the adsorbate in these areas. Hence, to improve our model, in this study, we considered the diffusion of adsorbates from the sub-monolayer to the second layer. Accordingly, we simulated the TPD spectra of both NH3 and H2O on the RuO2(110) surface using condensation approximation. Our results indicate that the diffusion barriers of the adsorbates at high coverage are smaller than their direct desorption energies. Hence, the diffusion of the adsorbates to the second layer from the sub-monolayer at higher coverage is kinetically favorable, which then desorb directly even at low temperatures. Furthermore, the simulated TPD spectra clearly depict the previous experimental results of both adsorbates after considering the diffusion.
程序升温脱附(TPD)是最直接的表面科学实验之一,可用于确定反应的热力学和动力学参数。在我们之前的研究(J. Phys. Chem. C,2013,117,6136-6142)中,我们提出了一种将 DFT 方法与微观动力学相结合的模型,用于研究 NH3 和 H2O 在 RuO2(110)表面上的 TPD 谱。虽然我们的模型预测了两种吸附物的物理吸附和化学吸附峰与实验 TPD 谱一致,但它未能解释物理吸附和化学吸附区之间的区域,并低估了这些区域中吸附物的强度。因此,为了改进我们的模型,在这项研究中,我们考虑了吸附物从亚单层到第二层的扩散。因此,我们使用凝聚近似模拟了 NH3 和 H2O 在 RuO2(110)表面上的 TPD 谱。我们的结果表明,在高覆盖度下吸附物的扩散势垒小于其直接脱附能。因此,在高覆盖度下,吸附物从亚单层到第二层的扩散在动力学上是有利的,即使在低温下也会直接脱附。此外,考虑到扩散后,模拟的 TPD 谱清楚地描绘了两种吸附物的先前实验结果。