Wageningen Marine Research, Ankerpark 27, 1781 AG Den Helder, The Netherlands.
CARAT GmbH, Harderhook 22, 46395 Bocholt, Germany.
Chemosphere. 2018 Dec;213:103-113. doi: 10.1016/j.chemosphere.2018.09.032. Epub 2018 Sep 7.
Studies investigating the effects of plastic litter on marine biota have almost exclusively utilised pristine plastic materials that are homogeneous in polymer type, size, shape and chemical composition. This is particularly the case for microplastics (<5 mm), where collecting sufficient quantities from the marine environment for use in laboratory impacts studies is simply not feasible. Weathered plastics collected from the marine environment show considerable physical and chemical differences to pristine and post-production consumer plastics. For this study, macroplastic litter was collected on a Dutch beach and cryo-milled to create a microplastic mixture for environmental impact assessments. The sample composition followed proportions of marine plastic litter types observed in an earlier large beach clean-up. Polymer composition of the sample was assessed by infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry analysis (DSC). The particle size distribution of the cryo-milled microplastics showed that particles 0.5-2.0 mm represented 68% of mass, but smaller sizes (<2 mm) strongly dominated numerically. Inductively coupled plasma spectroscopy (ICP-MS and ICP-OES) analysis of the microplastic mixture revealed a broad range of metals and other elements (e.g. Al, Cd, Cr, Fe, Mg, Pb, S and Zn), representing common inorganic additives used as colorants, fillers and stabilisers. GC-MS analysis identified a broad range of organic plasticisers, stabilisers, antioxidants and flame retardants. Comparison of different analytical approaches showed that creation of a homogeneous microplastic mixture is possible, representing a first step in closing the gap between laboratory studies with pristine materials and realistic scenarios with weathered microplastic.
研究塑料垃圾对海洋生物群的影响几乎完全使用了同质聚合物类型、大小、形状和化学成分的原始塑料材料。对于微塑料(<5 毫米)来说尤其如此,因为从海洋环境中收集足够数量的微塑料用于实验室影响研究是根本不可能的。从海洋环境中收集的风化塑料与原始和消费后塑料在物理和化学上有很大的不同。在这项研究中,在荷兰海滩上收集了大块塑料垃圾,并进行冷冻粉碎,以创建用于环境影响评估的微塑料混合物。该样本的组成遵循了早期大规模海滩清理中观察到的海洋塑料垃圾类型的比例。通过红外光谱(ATR-FTIR)和差示扫描量热分析(DSC)评估了样品的聚合物组成。冷冻粉碎的微塑料的粒径分布表明,0.5-2.0 毫米的颗粒占质量的 68%,但更小的尺寸(<2 毫米)在数量上占主导地位。对微塑料混合物的电感耦合等离子体光谱(ICP-MS 和 ICP-OES)分析显示,存在广泛的金属和其他元素(如 Al、Cd、Cr、Fe、Mg、Pb、S 和 Zn),代表了常用的无机添加剂,如着色剂、填充剂和稳定剂。GC-MS 分析确定了广泛的有机增塑剂、稳定剂、抗氧化剂和阻燃剂。不同分析方法的比较表明,创建均匀的微塑料混合物是可能的,这是缩小实验室用原始材料和实际风化微塑料情景之间差距的第一步。