Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia.
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia.
Eur J Med Chem. 2018 Oct 5;158:214-235. doi: 10.1016/j.ejmech.2018.08.009. Epub 2018 Aug 6.
The hepatitis C caused by the hepatitis C virus (HCV) is an acute and/or chronic liver disease ranging in severity from a mild brief ailment to a serious lifelong illness that affects up to 3% of the world population and imposes significant and increasing social, economic, and humanistic burden. Over the past decade, its treatment was revolutionized by the development and introduction into clinical practice of the direct acting antiviral (DAA) agents targeting the non-structural viral proteins NS3/4A, NS5A, and NS5B. However, the current treatment options still have important limitations, thus, the development of new classes of DAAs acting on different viral targets and having better pharmacological profile is highly desirable. The hepatitis C virus p7 viroporin is a relatively small hydrophobic oligomeric viral ion channel that plays a critical role during virus assembly and maturation, making it an attractive and validated target for the development of the cage compound-based inhibitors. Using the homology modeling, molecular dynamics, and molecular docking techniques, we have built a representative set of models of the hepatitis C virus p7 ion channels (Gt1a, Gt1b, Gt1b_L20F, Gt2a, and Gt2b), analyzed the inhibitor binding sites, and identified a number of potential broad-spectrum inhibitor structures targeting them. For one promising compound, the binding to these targets was additionally confirmed and the binding modes and probable mechanisms of action were clarified by the molecular dynamics simulations. A number of compounds were synthesized, and the tests of their antiviral activity (using the BVDV model) and cytotoxicity demonstrate their potential therapeutic usefulness and encourage further more detailed studies. The proposed approach is also suitable for the design of broad-spectrum ligands interacting with other multiple labile targets including various viroporins.
丙型肝炎由丙型肝炎病毒(HCV)引起,是一种严重程度不一的急性和/或慢性肝脏疾病,从轻度短暂不适到严重的终身疾病,影响全球人口的 3%左右,并造成巨大且不断增加的社会、经济和人文负担。在过去十年中,由于针对非结构病毒蛋白 NS3/4A、NS5A 和 NS5B 的直接作用抗病毒(DAA)药物的开发和引入临床实践,其治疗方法发生了革命性变化。然而,目前的治疗选择仍然存在重要的局限性,因此,开发作用于不同病毒靶点且具有更好药理学特性的新型 DAA 类药物是非常需要的。丙型肝炎病毒 p7 衣壳蛋白是一种相对较小的疏水性寡聚病毒离子通道,在病毒组装和成熟过程中发挥关键作用,使其成为开发基于笼状化合物抑制剂的有吸引力和经过验证的靶标。我们使用同源建模、分子动力学和分子对接技术,构建了一组具有代表性的丙型肝炎病毒 p7 离子通道(Gt1a、Gt1b、Gt1b_L20F、Gt2a 和 Gt2b)模型,分析了抑制剂结合位点,并确定了一些针对它们的潜在广谱抑制剂结构。对于一种有前途的化合物,通过分子动力学模拟进一步证实了其与这些靶点的结合,并阐明了其结合模式和可能的作用机制。合成了一些化合物,并对其抗病毒活性(使用 BVDV 模型)和细胞毒性进行了测试,证明了它们具有潜在的治疗用途,并鼓励进一步进行更详细的研究。所提出的方法也适用于设计与其他多种不稳定靶标(包括各种衣壳蛋白)相互作用的广谱配体。