Suppr超能文献

银簇的DNA定向荧光开关

DNA-Directed Fluorescence Switching of Silver Clusters.

作者信息

Ganguly Mainak, Bradsher Cara, Goodwin Peter, Petty Jeffrey T

机构信息

Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States.

Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2015;119(49):27829-27837. doi: 10.1021/acs.jpcc.5b08834. Epub 2015 Nov 13.

Abstract

Silver clusters with ≲30 atoms are molecules with diverse electronic spectra and wide-ranging emission intensities. Specific cluster chromophores form within DNA strands, and we consider a DNA scaffold that transforms a pair of silver clusters. This ~20-nucleotide strand has two components, a cluster domain (S1) that stabilizes silver clusters and a recognition site (S2) that hybridizes with complementary oligonucleotides (S2C). The single-stranded S1-S2 exclusively develops clusters with violet absorption and low emission. This conjugate hybridizes with S2C to form S1-S2:S2C, and the violet chromophore transforms to a fluorescent counterpart with ≈ 490 nm/ ≈ 550 nm and with ~100-fold stronger emission. Our studies focus on both the S1 sequence and structure that direct this violet → blue-green cluster transformation. From the sequence perspective, CX sequences with X = adenine, thymine, and/or guanine favor the blue-green cluster, and the specificity of the binding site depends on three factors: the number of CX repeats, the identity of the X nucleobase, and the number of contiguous cytosines. A systematic series of oligonucleotides identified the optimal S1 sequence CACT and discerned distinct roles for the adenine, thymine, and cytosines. From the structure perspective, two factors guide the conformation of the CACT sequence: hybridization with the S2C complement and coordination by the cluster adduct. Spectroscopic and chromatographic studies show that the single-stranded CACT is folded by its blue-green cluster adduct. We propose a structural model in which the two CX motifs within CACT are cross-linked by the encapsulated cluster. These studies suggest that the structures of the DNA host and the cluster adduct are interdependent.

摘要

原子数≲30的银簇是具有多样电子光谱和广泛发射强度的分子。特定的簇生色团在DNA链内形成,我们考虑一种能转化一对银簇的DNA支架。这条约20个核苷酸的链有两个组分,一个稳定银簇的簇结构域(S1)和一个与互补寡核苷酸(S2C)杂交的识别位点(S2)。单链的S1 - S2仅形成具有紫光吸收和低发射的簇。这种共轭物与S2C杂交形成S1 - S2:S2C,紫光生色团转变为荧光对应物,发射波长约为490 nm/约550 nm,发射强度增强约100倍。我们的研究聚焦于指导这种紫光→蓝绿色簇转变的S1序列和结构。从序列角度来看,X为腺嘌呤、胸腺嘧啶和/或鸟嘌呤的CX序列有利于蓝绿色簇的形成,结合位点的特异性取决于三个因素:CX重复的次数、X核苷酸碱基的身份以及连续胞嘧啶的数量。一系列系统的寡核苷酸确定了最佳的S1序列CACT,并辨别出腺嘌呤、胸腺嘧啶和胞嘧啶的不同作用。从结构角度来看,两个因素指导CACT序列的构象:与S2C互补物的杂交以及簇加合物的配位。光谱和色谱研究表明,单链CACT被其蓝绿色簇加合物折叠。我们提出一个结构模型:CACT内的两个CX基序通过包封的簇交联。这些研究表明DNA宿主和簇加合物的结构是相互依存的。

相似文献

1
DNA-Directed Fluorescence Switching of Silver Clusters.
J Phys Chem C Nanomater Interfaces. 2015;119(49):27829-27837. doi: 10.1021/acs.jpcc.5b08834. Epub 2015 Nov 13.
2
A silver cluster-DNA equilibrium.
Anal Chem. 2013 Oct 15;85(20):9868-76. doi: 10.1021/ac4028559. Epub 2013 Sep 26.
3
Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts.
Anal Chem. 2014 Sep 16;86(18):9220-8. doi: 10.1021/ac502192w. Epub 2014 Sep 4.
4
Ten-atom silver cluster signaling and tempering DNA hybridization.
Anal Chem. 2015 May 19;87(10):5302-9. doi: 10.1021/acs.analchem.5b01265. Epub 2015 May 7.
5
A Segregated, Partially Oxidized, and Compact Ag10 Cluster within an Encapsulating DNA Host.
J Am Chem Soc. 2016 Mar 16;138(10):3469-77. doi: 10.1021/jacs.5b13124. Epub 2016 Mar 7.
6
Optical sensing by transforming chromophoric silver clusters in DNA nanoreactors.
Anal Chem. 2012 Jan 3;84(1):356-64. doi: 10.1021/ac202697d. Epub 2011 Dec 8.
7
Silver clusters as both chromophoric reporters and DNA ligands.
Anal Chem. 2013 Feb 19;85(4):2183-90. doi: 10.1021/ac303531y. Epub 2013 Feb 1.
8
Base-Directed Formation of Fluorescent Silver Clusters.
J Phys Chem C Nanomater Interfaces. 2008 Dec 4;112(48):18776-18782. doi: 10.1021/jp804031v. Epub 2008 Nov 11.
9
Footprints of Nanoscale DNA-Silver Cluster Chromophores Activated-Electron Photodetachment Mass Spectrometry.
ACS Nano. 2019 Dec 24;13(12):14070-14079. doi: 10.1021/acsnano.9b06470. Epub 2019 Nov 27.
10
Tug-of-War between DNA Chelation and Silver Agglomeration in DNA-Silver Cluster Chromophores.
J Phys Chem B. 2022 Jun 2;126(21):3822-3830. doi: 10.1021/acs.jpcb.2c01054. Epub 2022 May 20.

引用本文的文献

1
Optical, structural, and biological properties of silver nanoclusters formed within the loop of a C-12 hairpin sequence.
Nanoscale Adv. 2023 Jun 12;5(13):3500-3511. doi: 10.1039/d3na00092c. eCollection 2023 Jun 27.
2
Structure and luminescence of DNA-templated silver clusters.
Nanoscale Adv. 2021 Jan 21;3(5):1230-1260. doi: 10.1039/d0na01005g. eCollection 2021 Mar 9.
5
Footprints of Nanoscale DNA-Silver Cluster Chromophores Activated-Electron Photodetachment Mass Spectrometry.
ACS Nano. 2019 Dec 24;13(12):14070-14079. doi: 10.1021/acsnano.9b06470. Epub 2019 Nov 27.
6
The role of spacer sequence in modulating turn-on fluorescence of DNA-templated silver nanoclusters.
Nucleic Acids Res. 2018 Aug 21;46(14):6974-6982. doi: 10.1093/nar/gky521.

本文引用的文献

1
Base-Directed Formation of Fluorescent Silver Clusters.
J Phys Chem C Nanomater Interfaces. 2008 Dec 4;112(48):18776-18782. doi: 10.1021/jp804031v. Epub 2008 Nov 11.
2
DNA-Protected Silver Clusters for Nanophotonics.
Nanomaterials (Basel). 2015 Feb 12;5(1):180-207. doi: 10.3390/nano5010180.
3
Recent Progress in the Functionalization Methods of Thiolate-Protected Gold Clusters.
J Phys Chem Lett. 2014 Dec 4;5(23):4134-42. doi: 10.1021/jz501941p. Epub 2014 Nov 17.
4
NanoCluster Beacons Enable Detection of a Single N⁶-Methyladenine.
J Am Chem Soc. 2015 Aug 26;137(33):10476-9. doi: 10.1021/jacs.5b06038. Epub 2015 Aug 14.
5
Ten-atom silver cluster signaling and tempering DNA hybridization.
Anal Chem. 2015 May 19;87(10):5302-9. doi: 10.1021/acs.analchem.5b01265. Epub 2015 May 7.
6
Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis.
J Am Chem Soc. 2015 Apr 15;137(14):4610-3. doi: 10.1021/ja513152h. Epub 2015 Apr 2.
7
DNA/RNA Detection Using DNA-Templated Few-Atom Silver Nanoclusters.
Biosensors (Basel). 2013 Apr 23;3(2):185-200. doi: 10.3390/bios3020185.
8
Atomically precise metal nanoclusters: stable sizes and optical properties.
Nanoscale. 2015 Feb 7;7(5):1549-65. doi: 10.1039/c4nr05794e.
9
A complementary palette of NanoCluster Beacons.
ACS Nano. 2014 Oct 28;8(10):10150-60. doi: 10.1021/nn505338e. Epub 2014 Oct 17.
10
Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules.
Nanoscale. 2014 Nov 21;6(22):13328-47. doi: 10.1039/c4nr04561k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验