Ames Laboratory, Ames, IA 50011, United States of America. Department of Chemistry, Iowa State University, Ames, IA 50011, United States of America.
Nanotechnology. 2018 Dec 14;29(50):505601. doi: 10.1088/1361-6528/aae1e3. Epub 2018 Sep 17.
Using scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy, we show that Ru forms metallic nanoislands on graphite, covered by a graphene monolayer. These islands are air-stable, contain 2-4 layers of Ru, and have diameters on the order of 10 nm. To produce these nanoislands two conditions must be met during synthesis. The graphite surface must be ion-bombarded, and subsequently held at an elevated temperature (1000-1180 K) during Ru deposition. A coincidence lattice forms between the graphene overlayer and the Ru island top. Its characteristics-coincidence lattice constant, corrugation amplitude, and variation of carbon lattice appearance within the unit cell-closely resemble the well-established characteristics of single-layer graphene on the (0001) surface of bulk Ru. Quantitative analysis of the graphene lattice in relation to the coincidence lattice on the island tops show that the two-dimensional lattice constant of the underlying metal equals that of bulk Ru(0001), within experimental error. The embedded Ru islands are energetically favored over on-top (adsorbed) islands, based on density-functional-theory calculations for Ru films with 1-3 Ru layers. We propose a formation mechanism in which Ru atoms intercalate via defects that act as entry portals to the carbon galleries, followed by nucleation and growth in the galleries. In this model, high deposition temperature is necessary to prevent blockage of entry portals.
使用扫描隧道显微镜、X 射线光电子能谱和 X 射线吸收光谱,我们表明 Ru 在石墨上形成了覆盖有单层石墨烯的金属纳米岛。这些纳米岛在空气中稳定,包含 2-4 层 Ru,直径约为 10nm。为了生成这些纳米岛,在合成过程中必须满足两个条件。石墨表面必须受到离子轰击,随后在 Ru 沉积过程中保持在高温(1000-1180K)下。在石墨烯覆盖层和 Ru 岛顶之间形成了一个重合晶格。其特征——重合晶格常数、波纹幅度以及单元内碳晶格外观的变化——与大块 Ru(0001)表面单层石墨烯的特征非常相似。对岛顶重合晶格中石墨烯晶格的定量分析表明,在实验误差范围内,底层金属的二维晶格常数等于大块 Ru(0001)的晶格常数。基于 Ru 膜具有 1-3 层 Ru 的密度泛函理论计算,嵌入的 Ru 岛比顶置(吸附)岛更具能量优势。我们提出了一种形成机制,其中 Ru 原子通过作为进入碳层间空隙的入口的缺陷进行插层,然后在层间空隙中进行成核和生长。在这种模型中,需要高温沉积以防止入口被堵塞。