Suppr超能文献

发酵对豌豆浓缩蛋白的蛋白质消化率及非营养性化合物含量的影响。

Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate.

作者信息

Çabuk Burcu, Nosworthy Matthew G, Stone Andrea K, Korber Darren R, Tanaka Takuji, House James D, Nickerson Michael T

机构信息

Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK, S7N 5A8, Canada.

Department of Human Nutritional Sciences, Department of Food Science, Department of Animal Science, Canadian Centre for Agri-Food Research in Health and Medicine, Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.

出版信息

Food Technol Biotechnol. 2018 Jun;56(2):257-264. doi: 10.17113/ftb.56.02.18.5450.

Abstract

In order to determine the impact of fermentation on protein quality, pea protein concentrate (PPC) was fermented with for 11 h and total phenol and tannin contents, protease inhibitor activity, amino acid composition and protein digestibility were analyzed. Phenol levels, expressed as catechin equivalents (CE), increased on dry mass basis from 2.5 at 0 h to 4.9 mg CE per 1 g of PPC at 11 h. Tannin content rose from 0.14 at 0 h to a maximum of 0.96 mg CE per 1 g of PPC after 5 h, and thereafter declined to 0.79 mg/g after 11 h. After 9 h of fermentation trypsin inhibitor activity decreased, however, at all other fermentation times similar levels to the PPC at time 0 h were produced. Chymotrypsin inhibitor activity decreased from 3.7 to 1.1 chymotrypsin inhibitory units (CIU) per mg following 11 h of fermentation. Protein digestibility reached a maximum (87.4%) after 5 h of fermentation, however, the sulfur amino acid score was reduced from 0.84 at 0 h to 0.66 at 11 h. This reduction in sulfur content altered the protein digestibility-corrected amino acid score from 67.0% at 0 h to 54.6% at 11 h. These data suggest that while fermentation is a viable method of reducing certain non-nutritive compounds in pea protein concentrate, selection of an alternative bacterium which metabolises sulfur amino acids to a lesser extent than should be considered.

摘要

为了确定发酵对蛋白质质量的影响,用[具体菌种]对豌豆浓缩蛋白(PPC)进行了11小时的发酵,并分析了总酚和单宁含量、蛋白酶抑制剂活性、氨基酸组成以及蛋白质消化率。以儿茶素当量(CE)表示的酚含量,以干重计,从0小时的2.5增加到11小时每1克PPC中的4.9毫克CE。单宁含量从0小时的0.14上升,在5小时后达到每1克PPC最高0.96毫克CE,此后在11小时降至0.79毫克/克。发酵9小时后胰蛋白酶抑制剂活性降低,然而,在所有其他发酵时间产生的水平与0小时的PPC相似。发酵11小时后,糜蛋白酶抑制剂活性从每毫克3.7个糜蛋白酶抑制单位(CIU)降至1.1个CIU。发酵5小时后蛋白质消化率达到最高(87.4%),然而,含硫氨基酸评分从0小时的0.84降至11小时的0.66。这种硫含量的降低使经蛋白质消化率校正的氨基酸评分从0小时的67.0%变为11小时的54.6%。这些数据表明,虽然发酵是降低豌豆浓缩蛋白中某些非营养化合物的可行方法,但应考虑选择一种比[具体菌种]代谢含硫氨基酸程度更低的替代细菌。

相似文献

1
Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate.
Food Technol Biotechnol. 2018 Jun;56(2):257-264. doi: 10.17113/ftb.56.02.18.5450.
2
3
Effect of Lactic Fermentation and Cooking on Nutrient and Mineral Digestibility of Peas.
Front Nutr. 2022 Feb 24;9:838963. doi: 10.3389/fnut.2022.838963. eCollection 2022.
7
8
Fermented pigeon pea (Cajanus cajan) ingredients in pasta products.
J Agric Food Chem. 2006 Sep 6;54(18):6685-91. doi: 10.1021/jf0606095.
9
New probiotics ( and ) supplemented to fermented rice straw-based rations on digestibility and rumen characteristics .
J Adv Vet Anim Res. 2023 Mar 31;10(1):96-102. doi: 10.5455/javar.2023.j657. eCollection 2023 Mar.

引用本文的文献

1
Application and utilization of fermentation as a processing tool to mitigate protein putrefaction in plant-based diets.
Front Microbiol. 2025 Aug 1;16:1638378. doi: 10.3389/fmicb.2025.1638378. eCollection 2025.
4
Recycling Agricultural Waste: Sustainable Solutions for Enhancing Livestock Nutrition.
Vet Med Sci. 2025 May;11(3):e70321. doi: 10.1002/vms3.70321.
9
Transforming plant proteins into plant-based meat alternatives: challenges and future scope.
Food Sci Biotechnol. 2024 Sep 10;33(15):3423-3443. doi: 10.1007/s10068-024-01683-0. eCollection 2024 Dec.
10
Impact of dehulling, germination and fermentation on the bioactive and functional properties of grey pea flour.
Front Nutr. 2024 Oct 9;11:1478399. doi: 10.3389/fnut.2024.1478399. eCollection 2024.

本文引用的文献

1
Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate.
Food Chem. 2016 Aug 15;205:229-38. doi: 10.1016/j.foodchem.2016.03.016. Epub 2016 Mar 8.
2
The Potential Use of Fermented Chickpea and Faba Bean Flour as Food Ingredients.
Plant Foods Hum Nutr. 2016 Mar;71(1):90-5. doi: 10.1007/s11130-016-0532-y.
3
Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties.
Int J Food Microbiol. 2015 Jan 16;193:34-42. doi: 10.1016/j.ijfoodmicro.2014.10.012. Epub 2014 Oct 12.
4
Fermentation enhances the content of bioactive compounds in kidney bean extracts.
Food Chem. 2015 Apr 1;172:343-52. doi: 10.1016/j.foodchem.2014.09.084. Epub 2014 Sep 28.
5
Antioxidant and antihypertensive properties of liquid and solid state fermented lentils.
Food Chem. 2013 Jan 15;136(2):1030-7. doi: 10.1016/j.foodchem.2012.09.015. Epub 2012 Sep 17.
6
Food phenolics and lactic acid bacteria.
Int J Food Microbiol. 2009 Jun 30;132(2-3):79-90. doi: 10.1016/j.ijfoodmicro.2009.03.025. Epub 2009 Apr 5.
7
Volatile sulfur compounds produced by probiotic bacteria in the presence of cysteine or methionine.
Lett Appl Microbiol. 2009 Jun;48(6):777-82. doi: 10.1111/j.1472-765X.2009.02610.x. Epub 2009 Apr 1.
8
Plant secondary metabolites.
Methods Mol Biol. 2007;393:1-122. doi: 10.1007/978-1-59745-425-4_1.
9
An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials.
J Automat Chem. 1986;8(4):170-7. doi: 10.1155/S1463924686000330.
10
Fermentation as a bio-process to obtain functional soybean flours.
J Agric Food Chem. 2007 Oct 31;55(22):8972-9. doi: 10.1021/jf071823b. Epub 2007 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验