Dilbeck Tristan, Hanson Kenneth
Department of Chemistry & Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States.
J Phys Chem Lett. 2018 Oct 4;9(19):5810-5821. doi: 10.1021/acs.jpclett.8b02635. Epub 2018 Sep 24.
Molecular photon upconversion via triplet-triplet annihilation (TTA-UC) is an intriguing strategy to increase solar cell efficiencies and surpass the Shockley-Quiesser (SQ) limit. In this Perspective, we recount our group's efforts to harness TTA-UC by directly incorporating metal ion linked multilayers of acceptor and sensitizer molecules into an organic-inorganic hybrid solar cell architecture. These self-assembled multilayers facilitate both upconverted emission and photocurrent generation from the upconverted state with a record contribution of 0.158 mA cm under 1 sun solar flux. We recount the progression toward this record and the mechanistic insights learned along the way, summarize the rate- and efficiency-limiting events, and outline improvements that must be made to produce a viable TTA-UC solar cell that can surpass the SQ limit. We also discuss the potential impact that efficient TTA-UC and photocurrent generation could have on existing record solar cells.
通过三重态-三重态湮灭实现的分子光子上转换(TTA-UC)是一种提高太阳能电池效率并突破肖克利-奎伊瑟(SQ)极限的有趣策略。在这篇观点文章中,我们讲述了我们团队通过将金属离子连接的受体和敏化剂分子多层膜直接整合到有机-无机混合太阳能电池结构中来利用TTA-UC的努力。这些自组装多层膜既促进了上转换发射,也促进了从上转换态产生光电流,在1个太阳光照通量下的贡献达到了创纪录的0.158 mA cm 。我们讲述了朝着这一纪录的进展以及在此过程中获得的机理见解,总结了速率和效率限制事件,并概述了为制造出能够突破SQ极限的可行TTA-UC太阳能电池必须进行的改进。我们还讨论了高效TTA-UC和光电流产生对现有纪录太阳能电池可能产生的潜在影响。