Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.
Department of Medicine, Boston University, Boston, MA, 02118, USA.
Int J Obes (Lond). 2019 Mar;43(3):457-467. doi: 10.1038/s41366-018-0190-2. Epub 2018 Sep 19.
Indices of body fat distribution are heritable, but few genetic signals have been reported from genome-wide association studies (GWAS) of computed tomography (CT) imaging measurements of body fat distribution. We aimed to identify genes associated with adiposity traits and the key drivers that are central to adipose regulatory networks.
We analyzed gene transcript expression data in blood from participants in the Framingham Heart Study, a large community-based cohort (n up to 4303), as well as implemented an integrative analysis of these data and existing biological information.
Our association analyses identified unique and common gene expression signatures across several adiposity traits, including body mass index, waist-hip ratio, waist circumference, and CT-measured indices, including volume and quality of visceral and subcutaneous adipose tissues. We identified six enriched KEGG pathways and two co-expression modules for further exploration of adipose regulatory networks. The integrative analysis revealed four gene sets (Apoptosis, p53 signaling pathway, Proteasome, Ubiquitin-mediated proteolysis) and two co-expression modules with significant genetic variants and 94 key drivers/genes whose local networks were enriched with adiposity-associated genes, suggesting that these enriched pathways or modules have genetic effects on adiposity. Most identified key driver genes are involved in essential biological processes such as controlling cell cycle, DNA repair, and degradation of regulatory proteins are cancer related.
Our integrative analysis of genetic, transcriptional, and biological information provides a list of compelling candidates for further follow-up functional studies to uncover the biological mechanisms underlying obesity. These candidates highlight the value of examining CT-derived and central adiposity traits.
体脂分布指数具有遗传性,但从体脂分布的计算机断层扫描(CT)成像测量的全基因组关联研究(GWAS)中报告的遗传信号很少。我们旨在确定与肥胖相关的基因,以及对脂肪调节网络至关重要的关键驱动因素。
我们分析了弗雷明汉心脏研究参与者的血液中的基因转录表达数据,这是一个大型社区队列(最多有 4303 名参与者),并对这些数据和现有生物学信息进行了综合分析。
我们的关联分析确定了几种肥胖特征(包括体重指数、腰臀比、腰围和 CT 测量的指数,包括内脏和皮下脂肪组织的体积和质量)的独特和共同的基因表达特征。我们确定了六个富集的 KEGG 通路和两个共表达模块,以进一步探索脂肪调节网络。综合分析揭示了四个基因集(凋亡、p53 信号通路、蛋白酶体、泛素介导的蛋白水解)和两个共表达模块,这些基因集和模块具有显著的遗传变异和 94 个关键驱动基因/基因,其局部网络富含与肥胖相关的基因,这表明这些富集的通路或模块对肥胖具有遗传影响。大多数鉴定出的关键驱动基因参与控制细胞周期、DNA 修复和调节蛋白降解等重要生物学过程,与癌症有关。
我们对遗传、转录和生物学信息的综合分析提供了一份有前途的候选基因列表,可进一步进行后续的功能研究,以揭示肥胖的生物学机制。这些候选基因突出了检查 CT 衍生和中心性肥胖特征的价值。