Suppr超能文献

便携式傅里叶变换红外光谱与差分迁移谱联用用于先进的气相分析。

Portable combination of Fourier transform infrared spectroscopy and differential mobility spectrometry for advanced vapor phase analysis.

机构信息

Department of Mechanical and Aerospace Engineering, University of California Davis, CA 95616, USA.

出版信息

Analyst. 2018 Nov 19;143(23):5683-5691. doi: 10.1039/c8an01192c.

Abstract

Designing mobile devices for the analysis of complex sample mixtures containing a variety of analytes at different concentrations across a large dynamic range remains a challenging task in many analytical scenarios. To meet this challenge, a compact hybrid analytical platform has been developed combining Fourier transform infrared spectroscopy based on substrate-integrated hollow waveguides (iHWG-FTIR) with gas chromatography coupled differential mobility spectrometry (GC-DMS). Due to the complementarity of these techniques regarding analyte type and concentration, their combination provides a promising tool for the detection of complex samples containing a broad range of molecules at different concentrations. To date, the combination of infrared spectroscopy and ion mobility techniques remains expensive and bound to a laboratory utilizing e.g. IMS as prefilter or IR as ionization source. In the present study, a cost-efficient and portable solution has been developed and characterized representing the first truly hyphenated IR-DMS system. As a model analyte mixture, 5 ppm isopropylmercaptan (IPM) in methane (CH4) were diluted, and the concentration-dependent DMS signal of IPM along with the concentration-dependent IR signal of CH4 were recorded for all three hybrid IR-DMS systems. While guiding the sample through the iHWG-FTIR or the GC-DMS first did not affect the obtained signals, optimizing the IR data acquisition parameters did benefit the analytical results.

摘要

设计用于分析含有多种不同浓度分析物的复杂样品混合物的移动设备,对于许多分析场景而言仍然是一项具有挑战性的任务。为了应对这一挑战,我们开发了一种紧凑的混合分析平台,该平台结合了基于基底集成中空波导的傅里叶变换红外光谱(iHWG-FTIR)和气相色谱与差分迁移率谱法(GC-DMS)。由于这些技术在分析物类型和浓度方面具有互补性,因此它们的组合为检测含有不同浓度的广泛分子的复杂样品提供了一种很有前途的工具。迄今为止,红外光谱与离子迁移技术的组合仍然昂贵,并且需要在实验室中使用例如 IMS 作为预过滤器或 IR 作为离子源。在本研究中,我们开发并表征了一种具有成本效益且便携式的解决方案,代表了第一个真正的联用 IR-DMS 系统。作为模型分析物混合物,我们将 5 ppm 的异丙硫醇(IPM)在甲烷(CH4)中进行了稀释,并记录了所有三种混合 IR-DMS 系统中 IPM 的浓度依赖性 DMS 信号以及 CH4 的浓度依赖性 IR 信号。虽然引导样品首先通过 iHWG-FTIR 或 GC-DMS 不会影响获得的信号,但优化 IR 数据采集参数确实有利于分析结果。

相似文献

3
Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.
J Pharm Biomed Anal. 2014 Jan;87:176-90. doi: 10.1016/j.jpba.2013.04.037. Epub 2013 May 6.
5
Ion mobility spectrometry detection for gas chromatography.
J Chromatogr A. 2008 Jan 4;1177(1):12-27. doi: 10.1016/j.chroma.2007.10.110. Epub 2007 Nov 12.
6
Optimizing the Analytical Performance of Substrate-Integrated Hollow Waveguides: Experiment and Simulation.
Appl Spectrosc. 2019 Dec;73(12):1451-1460. doi: 10.1177/0003702819867342. Epub 2019 Aug 22.
10
Characterization of metal oxide gas sensors via optical techniques.
Anal Bioanal Chem. 2020 Jul;412(19):4575-4584. doi: 10.1007/s00216-020-02705-6. Epub 2020 Jun 16.

引用本文的文献

1
Comparative Analysis of Laboratory-Based and Spectroscopic Methods Used to Estimate the Algal Density of .
Microorganisms. 2024 May 23;12(6):1050. doi: 10.3390/microorganisms12061050.
2
Portable chemical detection platform for on-site monitoring of odorant levels in natural gas.
J Chromatogr A. 2023 Aug 30;1705:464151. doi: 10.1016/j.chroma.2023.464151. Epub 2023 Jun 18.
3
From Light Pipes to Substrate-Integrated Hollow Waveguides for Gas Sensing: A Review.
ACS Meas Sci Au. 2021 Oct 18;1(3):97-109. doi: 10.1021/acsmeasuresciau.1c00029. eCollection 2021 Dec 15.
4
Enantioselective synthesis of (-)-tetrabenazine continuous crystallization-induced diastereomer transformation.
Chem Sci. 2022 Aug 24;13(36):10765-10772. doi: 10.1039/d2sc01825j. eCollection 2022 Sep 21.
6
Characterization of Gas Absorption Modules Based on Flexible Mid-Infrared Hollow Waveguides.
Sensors (Basel). 2019 Apr 10;19(7):1698. doi: 10.3390/s19071698.

本文引用的文献

1
Seleniranium Ions Undergo π-Ligand Exchange via an Associative Mechanism in the Gas Phase.
J Org Chem. 2017 Jun 16;82(12):6289-6297. doi: 10.1021/acs.joc.7b00877. Epub 2017 Jun 2.
2
An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies.
Nat Chem. 2017 Jan;9(1):39-44. doi: 10.1038/nchem.2615. Epub 2016 Sep 26.
3
Supervised Semi-Automated Data Analysis Software for Gas Chromatography / Differential Mobility Spectrometry (GC/DMS) Metabolomics Applications.
Int J Ion Mobil Spectrom. 2016 Sep;19(2):155-166. doi: 10.1007/s12127-016-0200-9. Epub 2016 May 20.
4
IR-MALDI ion mobility spectrometry.
Anal Bioanal Chem. 2016 Sep;408(23):6259-68. doi: 10.1007/s00216-016-9739-x. Epub 2016 Jul 2.
5
Conformations of Prolyl-Peptide Bonds in the Bradykinin 1-5 Fragment in Solution and in the Gas Phase.
J Am Chem Soc. 2016 Jul 27;138(29):9224-33. doi: 10.1021/jacs.6b04550. Epub 2016 Jul 18.
9
iCONVERT: an integrated device for the UV-assisted determination of H2S via mid-infrared gas sensors.
Anal Chem. 2015 Oct 6;87(19):9580-3. doi: 10.1021/acs.analchem.5b02731.
10
Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.
Anal Chem. 2015 Oct 6;87(19):9605-11. doi: 10.1021/acs.analchem.5b02730.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验