Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY.
Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY.
J Gen Physiol. 2018 Nov 5;150(11):1484-1497. doi: 10.1085/jgp.201812190. Epub 2018 Sep 20.
Bestrophin proteins are calcium (Ca)-activated chloride channels. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Whole-cell recordings show that ionic currents through BEST1 run down over time, but it is unclear whether this behavior is intrinsic to the channel or the result of cellular factors. Here, using planar lipid bilayer recordings of purified BEST1, we show that current rundown is an inherent property of the channel that can now be characterized as inactivation. Inactivation depends on the cytosolic concentration of Ca, such that higher concentrations stimulate inactivation. We identify a C-terminal inactivation peptide that is necessary for inactivation and dynamically interacts with a receptor site on the channel. Alterations of the peptide or its receptor dramatically reduce inactivation. Unlike inactivation peptides of voltage-gated channels that bind within the ion pore, the receptor for the inactivation peptide is on the cytosolic surface of the channel and separated from the pore. Biochemical, structural, and electrophysiological analyses indicate that binding of the peptide to its receptor promotes inactivation, whereas dissociation prevents it. Using additional mutational studies we find that the "neck" constriction of the pore, which we have previously shown to act as the Ca-dependent activation gate, also functions as the inactivation gate. Our results indicate that unlike a ball-and-chain inactivation mechanism involving physical occlusion of the pore, inactivation in BEST1 occurs through an allosteric mechanism wherein binding of a peptide to a surface-exposed receptor controls a structurally distant gate.
Bestrophin 蛋白是钙 (Ca) 激活的氯离子通道。Bestrophin 1 (BEST1) 的突变会导致黄斑退行性疾病。全细胞记录显示,BEST1 中的离子电流会随着时间的推移而衰减,但目前尚不清楚这种行为是通道本身的特性还是细胞因素的结果。在这里,我们使用纯化的 BEST1 的平面脂质双层记录,表明电流衰减是通道的固有特性,现在可以将其特征化为失活。失活取决于细胞质中 Ca 的浓度,较高的浓度会刺激失活。我们确定了一个 C 末端失活肽,它是失活所必需的,并与通道上的受体位点动态相互作用。改变该肽或其受体可大大减少失活。与结合在离子通道内的电压门控通道的失活肽不同,失活肽的受体位于通道的细胞质表面,与通道的离子通道分离。生化、结构和电生理分析表明,肽与受体的结合促进失活,而解离则阻止失活。通过额外的突变研究,我们发现我们之前已经表明作为 Ca 依赖性激活门的孔的“颈部”收缩也充当失活门。我们的研究结果表明,与涉及孔物理阻塞的球链失活机制不同,BEST1 中的失活是通过变构机制发生的,其中肽与表面暴露的受体的结合控制结构上遥远的门。