Suppr超能文献

大小很重要:剖析基于面板的肿瘤突变负担分析的关键参数。

Size matters: Dissecting key parameters for panel-based tumor mutational burden analysis.

机构信息

Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.

Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Int J Cancer. 2019 Feb 15;144(4):848-858. doi: 10.1002/ijc.31878. Epub 2018 Dec 4.

Abstract

Tumor mutational burden (TMB) represents a new determinant of clinical benefit from immune checkpoint blockade that identifies responders independent of PD-L1 expression levels and is currently being explored in clinical trials. Although TMB can be measured directly by comprehensive genomic approaches such as whole-genome and exome sequencing, broad availability, short turnaround times, costs and amenability to formalin-fixed and paraffin-embedded tissue support the use of gene panel sequencing for approximating TMB in routine diagnostics. However, data on the parameters influencing panel-based TMB estimation are limited. Here, we report an extensive in silico analysis of the TCGA data set that simulates various panel sizes and compositions. We demonstrate that panel size is a critical parameter that influences confidence intervals (CIs) and cutoff values as well as important test parameters including sensitivity, specificity, and positive predictive value. Moreover, we evaluate the Illumina TSO500 panel, which will be made available for TMB estimation, and propose dynamic, entity-specific cutoff values based on current clinical trial data. Optimizing the cost-benefit ratio, our data suggest that panels between 1.5 and 3 Mbp are ideally suited to estimate TMB with small CIs, whereas smaller panels tend to deliver imprecise TMB estimates for low to moderate TMB (0-30 muts/Mbp), connected with insufficient separation of hypermutated tumors from non-hypermutated tumors.

摘要

肿瘤突变负荷 (TMB) 是一种新的临床获益决定因素,它可独立于 PD-L1 表达水平识别应答者,目前正在临床试验中进行探索。虽然 TMB 可以通过全基因组和外显子测序等全面的基因组方法直接测量,但广泛的可用性、较短的周转时间、成本以及对福尔马林固定和石蜡包埋组织的适用性支持使用基因面板测序来估算常规诊断中的 TMB。然而,关于影响基于面板的 TMB 估计的参数的数据有限。在这里,我们报告了对 TCGA 数据集的广泛计算机模拟分析,模拟了各种面板大小和组成。我们证明了面板大小是一个关键参数,它影响置信区间 (CI) 和截止值以及重要的测试参数,包括敏感性、特异性和阳性预测值。此外,我们评估了 Illumina TSO500 面板,该面板将可用于 TMB 估计,并基于当前临床试验数据提出了动态的、特定实体的截止值。为了优化成本效益比,我们的数据表明,1.5 到 3 Mbp 之间的面板最适合用小的 CI 来估计 TMB,而较小的面板往往会对低到中度 TMB(0-30 muts/Mbp)提供不准确的 TMB 估计,与对高突变肿瘤和非高突变肿瘤的分离不足有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验