Suppr超能文献

使用 3D 或 4D 采集技术在 1Hz 对明胶模型进行磁共振弹性成像。

MR elastography at 1 Hz of gelatin phantoms using 3D or 4D acquisition.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.

Department of Mechanical Engineering, University de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.

出版信息

J Magn Reson. 2018 Nov;296:112-120. doi: 10.1016/j.jmr.2018.08.012. Epub 2018 Aug 31.

Abstract

Magnetic Resonance Elastography (MRE) detects induced periodic motions in biological tissues allowing maps of tissue mechanical properties to be derived. In-vivo MRE is commonly performed at frequencies of 30-100 Hz using external actuation, however, using cerebro-vascular pulsation at 1 Hz as a form of intrinsic actuation (IA-MRE) eliminates the need for external motion sources and simplifies data acquisition. In this study a hydraulic actuation system was developed to drive 1 Hz motions in gelatin as a tool for investigating the performance limits of IA-MRE image reconstruction under controlled conditions. Quantitative flow (QFLOW) MR techniques were used to phase encode 1 Hz motions as a function of gradient direction using 3D or 4D acquisition; 4D acquisition was twice as fast and yielded comparable motion field and concomitant image reconstruction results provided the motion signal was sufficiently strong. Per voxel motion noise floor corresponded to a displacement amplitude of about 20-30 μm. Signal to noise ratio (SNR) was 94 ± 17 for 3D and dropped to 69 ± 10 for the faster 4D acquisition, but yielded octahedral shear stress and shear modulus maps of high quality that differed by only about 20% on average. QFLOW measurements in gel phantoms were improved significantly by adding Mn(II) to mimic relaxation rates found in brain. Overall, the hydraulic 1 Hz actuation system when coupled with 4D sequence acquisition produced a fast reliable approach for future IA-MRE phantom evaluation and contrast detail studies needed to benchmark imaging performance.

摘要

磁共振弹性成像(MRE)检测生物组织中的感应周期性运动,从而得出组织力学特性图。在体内,MRE 通常在 30-100Hz 的频率下使用外部激励进行,然而,使用 1Hz 的脑血管搏动作为一种内在激励形式(IA-MRE)消除了对外源运动的需求,并简化了数据采集。在这项研究中,开发了一种液压激励系统,以驱动明胶中的 1Hz 运动,作为在受控条件下研究 IA-MRE 图像重建性能极限的工具。定量流动(QFLOW)MR 技术用于根据梯度方向对 1Hz 运动进行相位编码,使用 3D 或 4D 采集;4D 采集快两倍,并且提供可比的运动场和伴随的图像重建结果,前提是运动信号足够强。每个体素的运动噪声基底对应于约 20-30μm 的位移幅度。3D 的信噪比(SNR)为 94±17,而更快的 4D 采集降至 69±10,但产生了高质量的八面体剪切应力和剪切模量图,平均差异仅约 20%。通过添加 Mn(II)模拟大脑中发现的弛豫率,凝胶体模中的 QFLOW 测量得到了显著改善。总的来说,当与 4D 序列采集相结合时,1Hz 液压激励系统为未来的 IA-MRE 体模评估和基准成像性能所需的对比度细节研究提供了一种快速可靠的方法。

相似文献

1
MR elastography at 1 Hz of gelatin phantoms using 3D or 4D acquisition.
J Magn Reson. 2018 Nov;296:112-120. doi: 10.1016/j.jmr.2018.08.012. Epub 2018 Aug 31.
2
Phantom evaluations of low frequency MR elastography.
Phys Med Biol. 2019 Mar 12;64(6):065010. doi: 10.1088/1361-6560/ab0290.
3
A Versatile MR Elastography Research Tool with a Modified Motion Signal-to-noise Ratio Approach.
Magn Reson Med Sci. 2024 Oct 1;23(4):417-427. doi: 10.2463/mrms.mp.2022-0149. Epub 2023 Apr 12.
4
An octahedral shear strain-based measure of SNR for 3D MR elastography.
Phys Med Biol. 2011 Jul 7;56(13):N153-64. doi: 10.1088/0031-9155/56/13/N02. Epub 2011 Jun 8.
5
Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
Magn Reson Med. 2017 Mar;77(3):1184-1192. doi: 10.1002/mrm.26207. Epub 2016 Mar 26.
6
Acquisition and reconstruction conditions in silico for accurate and precise magnetic resonance elastography.
Phys Med Biol. 2017 Nov 1;62(22):8655-8670. doi: 10.1088/1361-6560/aa9164.
7
Brain-mimicking phantom for biomechanical validation of motion sensitive MR imaging techniques.
J Mech Behav Biomed Mater. 2021 Oct;122:104680. doi: 10.1016/j.jmbbm.2021.104680. Epub 2021 Jul 10.
8
Uniqueness of poroelastic and viscoelastic nonlinear inversion MR elastography at low frequencies.
Phys Med Biol. 2019 Mar 27;64(7):075006. doi: 10.1088/1361-6560/ab0a7d.
9
Magnetic resonance elastography of the human brain using a multiphase DENSE acquisition.
Magn Reson Med. 2019 Jun;81(6):3578-3587. doi: 10.1002/mrm.27672. Epub 2019 Jan 29.

引用本文的文献

1
Cerebral stiffness changes during visual stimulation: Differential physiological mechanisms characterized by opposing mechanical effects.
Neuroimage Rep. 2021 May 26;1(2):100014. doi: 10.1016/j.ynirp.2021.100014. eCollection 2021 Jun.
3
Magnetic Resonance Elastography for Breast Cancer Diagnosis Through the Assessment of Tissue Biomechanical Properties.
Health Sci Rep. 2024 Dec 12;7(12):e70253. doi: 10.1002/hsr2.70253. eCollection 2024 Dec.
5
Imaging the subcellular viscoelastic properties of mouse oocytes.
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2213836120. doi: 10.1073/pnas.2213836120. Epub 2023 May 15.
6
3D Extrusion Printing of Biphasic Anthropomorphic Brain Phantoms Mimicking MR Relaxation Times Based on Alginate-Agarose-Carrageenan Blends.
ACS Appl Mater Interfaces. 2022 Nov 2;14(43):48397-48415. doi: 10.1021/acsami.2c12872. Epub 2022 Oct 21.
8
3D amplified MRI (aMRI).
Magn Reson Med. 2021 Sep;86(3):1674-1686. doi: 10.1002/mrm.28797. Epub 2021 May 5.
9
Reliable preparation of agarose phantoms for use in quantitative magnetic resonance elastography.
J Mech Behav Biomed Mater. 2019 Sep;97:65-73. doi: 10.1016/j.jmbbm.2019.05.001. Epub 2019 May 3.

本文引用的文献

1
Cardiovascular magnetic resonance elastography: A review.
NMR Biomed. 2018 Oct;31(10):e3853. doi: 10.1002/nbm.3853. Epub 2017 Nov 29.
2
Magnetic resonance elastography of the pancreas: Measurement reproducibility and relationship with age.
Magn Reson Imaging. 2017 Oct;42:1-7. doi: 10.1016/j.mri.2017.04.015. Epub 2017 May 2.
3
Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications.
Phys Med Biol. 2016 Dec 21;61(24):R401-R437. doi: 10.1088/0031-9155/61/24/R401. Epub 2016 Nov 15.
4
5
Simultaneous, multidirectional acquisition of displacement fields in magnetic resonance elastography of the in vivo human brain.
J Magn Reson Imaging. 2015 Aug;42(2):297-304. doi: 10.1002/jmri.24806. Epub 2014 Nov 26.
6
Spatially-resolved hydraulic conductivity estimation via poroelastic magnetic resonance elastography.
IEEE Trans Med Imaging. 2014 Jun;33(6):1373-80. doi: 10.1109/TMI.2014.2311456. Epub 2014 Mar 18.
7
High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T.
Neuroimage. 2014 Apr 15;90:308-14. doi: 10.1016/j.neuroimage.2013.12.032. Epub 2013 Dec 22.
8
Brain mechanical property measurement using MRE with intrinsic activation.
Phys Med Biol. 2012 Nov 21;57(22):7275-87. doi: 10.1088/0031-9155/57/22/7275. Epub 2012 Oct 18.
9
Multiresolution MR elastography using nonlinear inversion.
Med Phys. 2012 Oct;39(10):6388-96. doi: 10.1118/1.4754649.
10
AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING.
Curr Med Imaging Rev. 2011 Nov;7(4):255-282. doi: 10.2174/157340511798038684.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验