Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, 901 87, Sweden.
Department of Radiation Sciences, Umeå University, Umeå, 901 87, Sweden.
Med Phys. 2018 Dec;45(12):5450-5460. doi: 10.1002/mp.13204. Epub 2018 Nov 8.
There is increasing interest in computed tomography (CT) image estimations from magnetic resonance (MR) images. The estimated CT images can be utilized for attenuation correction, patient positioning, and dose planning in diagnostic and radiotherapy workflows. This study aims to introduce a novel statistical learning approach for improving CT estimation from MR images and to compare the performance of our method with the existing model-based CT image estimation methods.
The statistical learning approach proposed here consists of two stages. At the training stage, prior knowledge about tissue types from CT images was used together with a Gaussian mixture model (GMM) to explore CT image estimations from MR images. Since the prior knowledge is not available at the prediction stage, a classifier based on RUSBoost algorithm was trained to estimate the tissue types from MR images. For a new patient, the trained classifier and GMMs were used to predict CT image from MR images. The classifier and GMMs were validated by using voxel-level tenfold cross-validation and patient-level leave-one-out cross-validation, respectively.
The proposed approach has outperformance in CT estimation quality in comparison with the existing model-based methods, especially on bone tissues. Our method improved CT image estimation by 5% and 23% on the whole brain and bone tissues, respectively.
Evaluation of our method shows that it is a promising method to generate CT image substitutes for the implementation of fully MR-based radiotherapy and PET/MRI applications.
人们对从磁共振(MR)图像估算计算机断层扫描(CT)图像越来越感兴趣。估算的 CT 图像可用于衰减校正、患者定位和诊断及放射治疗工作流程中的剂量规划。本研究旨在介绍一种从 MR 图像中提高 CT 估计的新统计学习方法,并将我们的方法与现有的基于模型的 CT 图像估计方法的性能进行比较。
这里提出的统计学习方法包括两个阶段。在训练阶段,使用来自 CT 图像的组织类型的先验知识和高斯混合模型(GMM)一起探索从 MR 图像估算 CT 图像。由于在预测阶段没有先验知识,因此基于 RUSBoost 算法训练了一个分类器来从 MR 图像估计组织类型。对于新患者,使用训练的分类器和 GMM 从 MR 图像预测 CT 图像。使用体素级十折交叉验证和患者级留一交叉验证分别验证分类器和 GMM。
与现有的基于模型的方法相比,该方法在 CT 估计质量方面表现更好,尤其是在骨组织方面。我们的方法分别提高了整个大脑和骨组织的 CT 图像估计值 5%和 23%。
对我们方法的评估表明,它是一种有前途的方法,可以生成 CT 图像替代物,用于实现完全基于磁共振的放射治疗和 PET/MRI 应用。