Suppr超能文献

恢复力、健康认知、生活质量(QOL)、压力源与住院情况——来自澳大利亚维多利亚州莫纳什观察(MW)项目中不稳定健康历程临床护理现实世界的观察结果

Resilience, health perceptions, (QOL), stressors, and hospital admissions-Observations from the real world of clinical care of unstable health journeys in Monash Watch (MW), Victoria, Australia.

作者信息

Martin Carmel, Hinkley Narelle, Stockman Keith, Campbell Donald

机构信息

Monash Health Community, Monash Health, 122 Thomas Street, Dandenong, VIC, Australia.

Monash University, Melbourne, Australia.

出版信息

J Eval Clin Pract. 2018 Dec;24(6):1310-1318. doi: 10.1111/jep.13031. Epub 2018 Sep 24.

Abstract

RATIONALE, AIMS, AND OBJECTIVES: Monash Watch (MW) aims to reduce potentially preventable hospitalisations in a cohort above a risk "threshold" identified by Health Links Chronic Care (HLCC) algorithms using personal, diagnostic, and service data. MW conducted regular patient monitoring through outbound phone calls using the Patient Journey Record System (PaJR). PaJR alerts are intended to act as a self-reported barometer of stressors, resilience, and health perceptions with more alerts per call indicating greater risk.

AIMS

To describe predictors of PaJR alerts (self-reported from outbound phone calls) and predictors of acute admissions based upon a Theoretical Model for Static and Dynamic Indicators of Acute Admissions.

METHODS

Participants: HLCC cohort with predicted 3+ admissions/year in MW service arm for >40 days; n = 244. Baseline measures-Clinical Frailty Index (CFI); Connor Davis Resilience (CD-RISC): SF-12v2 Health Survey scores Mental (MSC) and Physical (PSC) and ICECAP-O. Dynamic measures: PaJR alerts/call in 10 869 MW records. Acute (non-surgical) admissions from Victorian Admitted Episode database.

ANALYSIS

Logistic regression, correlations, and timeseries homogeneity metrics using XLSTAT.

FINDINGS

Baseline indicators were significantly correlated except SF-12_MCS. SF12-MSC, SF12-PSC and ICECAP-O best predicted PaJR alerts/call (ROC: 0.84). CFI best predicted acute admissions (ROC: 0.66), adding CD-RISC, SF-12_MCS, SF-12_PCS and ICECAP-O with two-way interactions improved model (ROC: 0.70). PaJR alerts were higher ≤10 days preceding acute admissions and significantly correlated with admissions. Patterns in PaJR alerts in four case studies demonstrated dynamic variations signifying risk. Overall, all baseline indicators were explanatory supporting the theoretical model. Timing of PaJR alerts and acute admissions reflecting changing stressors, resilience, and health perceptions were not predicted from baseline indicators but provided a trigger for service interventions.

CONCLUSION

Both static and dynamic indicators representing stressors, resilience, and health perceptions have the potential to inform threshold models of admission risk in ways that could be clinically useful.

摘要

原理、目的和目标:莫纳什观察(MW)旨在减少使用个人、诊断和服务数据,通过健康链接慢性病护理(HLCC)算法确定的高于风险“阈值”队列中潜在可预防的住院情况。MW使用患者旅程记录系统(PaJR)通过外呼电话进行定期患者监测。PaJR警报旨在作为压力源、恢复力和健康认知的自我报告晴雨表,每次通话中更多的警报表明风险更高。

目的

根据急性入院静态和动态指标的理论模型,描述PaJR警报(来自外呼电话的自我报告)的预测因素和急性入院的预测因素。

方法

参与者:MW服务部门中预测每年入院3次以上且持续超过40天的HLCC队列;n = 244。基线测量——临床衰弱指数(CFI);康纳·戴维斯复原力(CD-RISC);SF-12v2健康调查分数,心理(MSC)和身体(PSC)以及ICECAP-O。动态测量:10869条MW记录中的PaJR警报/通话。来自维多利亚州入院事件数据库的急性(非手术)入院情况。

分析

使用XLSTAT进行逻辑回归、相关性和时间序列同质性指标分析。

结果

除SF-12_MCS外,基线指标显著相关。SF12-MSC、SF12-PSC和ICECAP-O最能预测PaJR警报/通话(ROC:0.84)。CFI最能预测急性入院(ROC:0.66),加入CD-RISC、SF-12_MCS、SF-12_PCS和ICECAP-O以及双向交互作用可改善模型(ROC:0.70)。急性入院前≤10天时PaJR警报更高,且与入院显著相关。四个案例研究中PaJR警报的模式显示出表明风险的动态变化。总体而言,所有基线指标都具有解释性,支持理论模型。PaJR警报和急性入院的时间反映了不断变化的压力源、恢复力和健康认知,无法从基线指标中预测,但为服务干预提供了触发因素。

结论

代表压力源、恢复力和健康认知的静态和动态指标都有可能以临床上有用的方式为入院风险阈值模型提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89cd/6283274/97abad14ab41/JEP-24-1310-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验