Suppr超能文献

基于流变学性质的水胶体聚集。

Hydrocolloid clustering based on their rheological properties.

机构信息

Food Hydrocolloids Research Center, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.

School of Science, RMIT University, Melbourne, Victoria, Australia.

出版信息

J Texture Stud. 2018 Dec;49(6):619-638. doi: 10.1111/jtxs.12368. Epub 2018 Oct 15.

Abstract

In this study, we proposed an objective classification of seven commercial hydrocolloids and four novel hydrocolloids. Total of 74 rheological parameters was generated by steady (flow behavior, hysteresis loop, single shear decay, in-shear structural recovery experiments), dynamic (strain sweep and frequency sweep tests), and transient (creep/recovery and stress relaxation) shear measurements. Subsequently, the parameters were classified into seven categories with more than 60% similarity indexes in each group using agglomerative hierarchical clustering based on those properties related to the number of linkage, strength of linkage, distance of linkage, rupture and flow, rate of destruction, the extent of destruction, and the state of destructured samples in the absence of flow field. Fuzzy c-means classifier used to extract patterns for each class. Our results correspond to four different classes; κ-carrageenan and agar gum were categorized in the first class, high methoxyl pectin, xanthan, sage seed gum and basil seed gum in the second class, alginate gum and Balangu-Shirazi seed gum in the third class, and guar gum, cress seed gum and carboxymethyl cellulose in the fourth class. Using this classification technique, complete rheological patterns can be extracted for each class. This classification provides a map for other researchers to rationally design the best test type which could describe adequately different properties of materials and avoid experiments with a similar type of parameters. The main reason for the frequent use of hydrocolloids in various industries is their ability to modify the rheology. A lot of works have been done to study the rheological behavior of many hydrocolloids in model and food systems. As there is still demand for new sources of hydrocolloids with more specific functionality in foods, probing the similarities among commercial and emerging hydrocolloids could help us to rationally design structural features in different formulations, besides gives insight into the structure-function relationship between them. This object could be attained by clustering, a part of the pattern recognition theory. Contrary to the traditional clustering methods, in which the membership of a product is exclusive for only a class, in constraint clustering by fuzzy logic methods, a partial membership can be shared by two or more classes. In this way, using the fuzzy logic clustering method, we clustered a number of commercial and novel hydrocolloids based on the steady, transient, and dynamic shear rheological properties and found a specific pattern among them. PRACTICAL APPLICATIONS: The main reason for the frequent use of hydrocolloids in various industries is their ability to modify the rheology. A lot of works have been done to study the rheological behavior of many hydrocolloids in model and food systems. As there is still demand for new sources of hydrocolloids with more specific functionality in foods, probing the similarities among commercial and emerging hydrocolloids could help us to rationally design structural features in different formulations, besides gives insight into the structure-function relationship between them. This object could be attained by clustering, a part of the pattern recognition theory. Contrary to the traditional clustering methods, in which the membership of a product is exclusive for only a class, in constraint clustering by fuzzy logic methods, a partial membership can be shared by two or more classes. In this way, using the fuzzy logic clustering method, we clustered a number of commercial and novel hydrocolloids based on the steady, transient, and dynamic shear rheological properties and found a specific pattern among them.

摘要

在这项研究中,我们提出了对七种商业水凝胶和四种新型水凝胶的客观分类。通过稳态(流动行为、滞后环、单剪切衰减、剪切内结构恢复实验)、动态(应变扫描和频率扫描测试)和瞬态(蠕变/恢复和应力松弛)剪切测量,共生成了 74 个流变学参数。随后,基于与链接数、链接强度、链接距离、破裂和流动、破坏速率、破坏程度以及无流场时样品的破坏状态相关的性质,使用基于凝聚层次聚类的方法,将这些参数分为七类,每组的相似度指数超过 60%。模糊 C 均值分类器用于提取每个类别的模式。我们的结果对应于四个不同的类别;κ-卡拉胶和琼脂糖被归类为第一类,高甲氧基果胶、黄原胶、鼠尾草种子胶和罗勒种子胶归类为第二类,藻酸盐胶和 Balangu-Shirazi 种子胶归类为第三类,瓜尔胶、水金凤种子胶和羧甲基纤维素归类为第四类。使用这种分类技术,可以为每个类别提取完整的流变模式。这种分类为其他研究人员提供了一张地图,以便他们合理地设计最佳测试类型,这些测试类型可以充分描述材料的不同性质,并避免使用具有相似类型参数的实验。水凝胶在各个行业中频繁使用的主要原因是它们能够改变流变学特性。已经做了大量工作来研究许多水凝胶在模型和食品系统中的流变行为。由于食品中仍然需要具有更多特定功能的新型水凝胶来源,因此探究商业和新兴水凝胶之间的相似性可以帮助我们在不同配方中合理设计结构特征,同时深入了解它们之间的结构-功能关系。这一目标可以通过聚类来实现,聚类是模式识别理论的一部分。与传统聚类方法不同,传统聚类方法中产品的成员资格仅专属于一个类别,而在模糊逻辑方法的约束聚类中,一个产品可以部分属于两个或更多类别。通过这种方式,我们使用模糊逻辑聚类方法,根据稳态、瞬态和动态剪切流变特性对一些商业和新型水凝胶进行了聚类,并在它们之间找到了特定的模式。实际应用:水凝胶在各个行业中频繁使用的主要原因是它们能够改变流变学特性。已经做了大量工作来研究许多水凝胶在模型和食品系统中的流变行为。由于食品中仍然需要具有更多特定功能的新型水凝胶来源,因此探究商业和新兴水凝胶之间的相似性可以帮助我们在不同配方中合理设计结构特征,同时深入了解它们之间的结构-功能关系。这一目标可以通过聚类来实现,聚类是模式识别理论的一部分。与传统聚类方法不同,传统聚类方法中产品的成员资格仅专属于一个类别,而在模糊逻辑方法的约束聚类中,一个产品可以部分属于两个或更多类别。通过这种方式,我们使用模糊逻辑聚类方法,根据稳态、瞬态和动态剪切流变特性对一些商业和新型水凝胶进行了聚类,并在它们之间找到了特定的模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验