Suppr超能文献

用于治疗糖尿病和慢性肾脏病患者的胰岛素及降糖药物。

Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease.

作者信息

Lo Clement, Toyama Tadashi, Wang Ying, Lin Jin, Hirakawa Yoichiro, Jun Min, Cass Alan, Hawley Carmel M, Pilmore Helen, Badve Sunil V, Perkovic Vlado, Zoungas Sophia

机构信息

Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia.

出版信息

Cochrane Database Syst Rev. 2018 Sep 24;9(9):CD011798. doi: 10.1002/14651858.CD011798.pub2.

Abstract

BACKGROUND

Diabetes is the commonest cause of chronic kidney disease (CKD). Both conditions commonly co-exist. Glucometabolic changes and concurrent dialysis in diabetes and CKD make glucose-lowering challenging, increasing the risk of hypoglycaemia. Glucose-lowering agents have been mainly studied in people with near-normal kidney function. It is important to characterise existing knowledge of glucose-lowering agents in CKD to guide treatment.

OBJECTIVES

To examine the efficacy and safety of insulin and other pharmacological interventions for lowering glucose levels in people with diabetes and CKD.

SEARCH METHODS

We searched the Cochrane Kidney and Transplant Register of Studies up to 12 February 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov.

SELECTION CRITERIA

All randomised controlled trials (RCTs) and quasi-RCTs looking at head-to-head comparisons of active regimens of glucose-lowering therapy or active regimen compared with placebo/standard care in people with diabetes and CKD (estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m) were eligible.

DATA COLLECTION AND ANALYSIS

Four authors independently assessed study eligibility, risk of bias, and quality of data and performed data extraction. Continuous outcomes were expressed as post-treatment mean differences (MD). Adverse events were expressed as post-treatment absolute risk differences (RD). Dichotomous clinical outcomes were presented as risk ratios (RR) with 95% confidence intervals (CI).

MAIN RESULTS

Forty-four studies (128 records, 13,036 participants) were included. Nine studies compared sodium glucose co-transporter-2 (SGLT2) inhibitors to placebo; 13 studies compared dipeptidyl peptidase-4 (DPP-4) inhibitors to placebo; 2 studies compared glucagon-like peptide-1 (GLP-1) agonists to placebo; 8 studies compared glitazones to no glitazone treatment; 1 study compared glinide to no glinide treatment; and 4 studies compared different types, doses or modes of administration of insulin. In addition, 2 studies compared sitagliptin to glipizide; and 1 study compared each of sitagliptin to insulin, glitazars to pioglitazone, vildagliptin to sitagliptin, linagliptin to voglibose, and albiglutide to sitagliptin. Most studies had a high risk of bias due to funding and attrition bias, and an unclear risk of detection bias.Compared to placebo, SGLT2 inhibitors probably reduce HbA1c (7 studies, 1092 participants: MD -0.29%, -0.38 to -0.19 (-3.2 mmol/mol, -4.2 to -2.2); I = 0%), fasting blood glucose (FBG) (5 studies, 855 participants: MD -0.48 mmol/L, -0.78 to -0.19; I = 0%), systolic blood pressure (BP) (7 studies, 1198 participants: MD -4.68 mmHg, -6.69 to -2.68; I = 40%), diastolic BP (6 studies, 1142 participants: MD -1.72 mmHg, -2.77 to -0.66; I = 0%), heart failure (3 studies, 2519 participants: RR 0.59, 0.41 to 0.87; I = 0%), and hyperkalaemia (4 studies, 2788 participants: RR 0.58, 0.42 to 0.81; I = 0%); but probably increase genital infections (7 studies, 3086 participants: RR 2.50, 1.52 to 4.11; I = 0%), and creatinine (4 studies, 848 participants: MD 3.82 μmol/L, 1.45 to 6.19; I = 16%) (all effects of moderate certainty evidence). SGLT2 inhibitors may reduce weight (5 studies, 1029 participants: MD -1.41 kg, -1.8 to -1.02; I = 28%) and albuminuria (MD -8.14 mg/mmol creatinine, -14.51 to -1.77; I = 11%; low certainty evidence). SGLT2 inhibitors may have little or no effect on the risk of cardiovascular death, hypoglycaemia, acute kidney injury (AKI), and urinary tract infection (low certainty evidence). It is uncertain whether SGLT2 inhibitors have any effect on death, end-stage kidney disease (ESKD), hypovolaemia, fractures, diabetic ketoacidosis, or discontinuation due to adverse effects (very low certainty evidence).Compared to placebo, DPP-4 inhibitors may reduce HbA1c (7 studies, 867 participants: MD -0.62%, -0.85 to -0.39 (-6.8 mmol/mol, -9.3 to -4.3); I = 59%) but may have little or no effect on FBG (low certainty evidence). DPP-4 inhibitors probably have little or no effect on cardiovascular death (2 studies, 5897 participants: RR 0.93, 0.77 to 1.11; I = 0%) and weight (2 studies, 210 participants: MD 0.16 kg, -0.58 to 0.90; I = 29%; moderate certainty evidence). Compared to placebo, DPP-4 inhibitors may have little or no effect on heart failure, upper respiratory tract infections, and liver impairment (low certainty evidence). Compared to placebo, it is uncertain whether DPP-4 inhibitors have any effect on eGFR, hypoglycaemia, pancreatitis, pancreatic cancer, or discontinuation due to adverse effects (very low certainty evidence).Compared to placebo, GLP-1 agonists probably reduce HbA1c (7 studies, 867 participants: MD -0.53%, -1.01 to -0.06 (-5.8 mmol/mol, -11.0 to -0.7); I = 41%; moderate certainty evidence) and may reduce weight (low certainty evidence). GLP-1 agonists may have little or no effect on eGFR, hypoglycaemia, or discontinuation due to adverse effects (low certainty evidence). It is uncertain whether GLP-1 agonists reduce FBG, increase gastrointestinal symptoms, or affect the risk of pancreatitis (very low certainty evidence).Compared to placebo, it is uncertain whether glitazones have any effect on HbA1c, FBG, death, weight, and risk of hypoglycaemia (very low certainty evidence).Compared to glipizide, sitagliptin probably reduces hypoglycaemia (2 studies, 551 participants: RR 0.40, 0.23 to 0.69; I = 0%; moderate certainty evidence). Compared to glipizide, sitagliptin may have had little or no effect on HbA1c, FBG, weight, and eGFR (low certainty evidence). Compared to glipizide, it is uncertain if sitagliptin has any effect on death or discontinuation due to adverse effects (very low certainty).For types, dosages or modes of administration of insulin and other head-to-head comparisons only individual studies were available so no conclusions could be made.

AUTHORS' CONCLUSIONS: Evidence concerning the efficacy and safety of glucose-lowering agents in diabetes and CKD is limited. SGLT2 inhibitors and GLP-1 agonists are probably efficacious for glucose-lowering and DPP-4 inhibitors may be efficacious for glucose-lowering. Additionally, SGLT2 inhibitors probably reduce BP, heart failure, and hyperkalaemia but increase genital infections, and slightly increase creatinine. The safety profile for GLP-1 agonists is uncertain. No further conclusions could be made for the other classes of glucose-lowering agents including insulin. More high quality studies are required to help guide therapeutic choice for glucose-lowering in diabetes and CKD.

摘要

背景

糖尿病是慢性肾脏病(CKD)最常见的病因。这两种疾病常同时存在。糖尿病和CKD患者的糖代谢变化以及同时进行的透析使降糖治疗具有挑战性,增加了低血糖风险。降糖药物主要是在肾功能接近正常的人群中进行研究的。了解CKD患者降糖药物的现有知识对于指导治疗很重要。

目的

研究胰岛素和其他药物干预措施降低糖尿病合并CKD患者血糖水平的疗效和安全性。

检索方法

我们通过与信息专家联系,使用与本综述相关的检索词,检索了截至2018年2月12日的Cochrane肾脏与移植研究注册库。注册库中的研究通过检索CENTRAL、MEDLINE和EMBASE、会议论文集、国际临床试验注册平台(ICTRP)检索入口以及ClinicalTrials.gov来识别。

入选标准

所有随机对照试验(RCT)和半随机对照试验,比较糖尿病合并CKD(估计肾小球滤过率(eGFR)<60 mL/min/1.73 m²)患者降糖治疗的活性方案之间的直接比较,或活性方案与安慰剂/标准治疗的比较,均符合入选标准。

数据收集与分析

四位作者独立评估研究的入选资格、偏倚风险和数据质量,并进行数据提取。连续结局以治疗后平均差值(MD)表示。不良事件以治疗后绝对风险差值(RD)表示。二分法临床结局以风险比(RR)及其95%置信区间(CI)表示。

主要结果

纳入了44项研究(128条记录,13036名参与者)。9项研究比较了钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂与安慰剂;13项研究比较了二肽基肽酶-4(DPP-4)抑制剂与安慰剂;2项研究比较了胰高血糖素样肽-1(GLP-1)激动剂与安慰剂;8项研究比较了格列酮类药物与非格列酮类治疗;1项研究比较了格列奈类药物与非格列奈类治疗;4项研究比较了不同类型、剂量或给药方式的胰岛素。此外,2项研究比较了西他列汀与格列吡嗪;1项研究分别比较了西他列汀与胰岛素、格列扎类药物与吡格列酮、维格列汀与西他列汀、利格列汀与伏格列波糖以及阿必鲁肽与西他列汀。由于资金和失访偏倚,大多数研究存在较高的偏倚风险,检测偏倚风险不明确。与安慰剂相比,SGLT2抑制剂可能降低糖化血红蛋白(HbA1c)(7项研究,1092名参与者:MD -0.29%,-0.38至-0.19(-3.2 mmol/mol,-4.2至-2.2);I² = 0%)、空腹血糖(FBG)(5项研究,855名参与者:MD -0.48 mmol/L,-0.78至-0.19;I² = 0%)、收缩压(BP)(7项研究,1198名参与者:MD -4.68 mmHg,-6.69至-2.68;I² = 40%)、舒张压(6项研究,1142名参与者:MD -1.72 mmHg,-2.77至-0.66;I² = 0%)、心力衰竭(3项研究,2519名参与者:RR 0.59,0.41至0.87;I² = 0%)和高钾血症(4项研究,2788名参与者:RR 0.58,0.42至0.81;I² = 0%);但可能增加生殖器感染(7项研究,3086名参与者:RR 2.50,1.52至4.11;I² = 0%)和肌酐(4项研究,848名参与者:MD 3.82 μmol/L,1.45至6.19;I² = 16%)(所有效应为中等确定性证据)。SGLT2抑制剂可能减轻体重(5项研究,1029名参与者:MD -1.41 kg,-1.8至-1.02;I² = 28%)和蛋白尿(MD -8.14 mg/mmol肌酐,-14.51至-1.77;I² = 11%;低确定性证据)。SGLT2抑制剂对心血管死亡、低血糖、急性肾损伤(AKI)和尿路感染的风险可能影响很小或无影响(低确定性证据)。SGLT2抑制剂对死亡、终末期肾病(ESKD)、血容量不足、骨折、糖尿病酮症酸中毒或因不良反应停药是否有任何影响尚不确定(极低确定性证据)。与安慰剂相比,DPP-4抑制剂可能降低HbA1c(7项研究,867名参与者:MD -0.62%,-0.85至-0.39(-6.8 mmol/mol,-9.3至-4.3);I² = 59%),但对FBG可能影响很小或无影响(低确定性证据)。DPP-4抑制剂对心血管死亡(2项研究,5897名参与者:RR 0.93,0.77至1.11;I² = 0%)和体重(2项研究,210名参与者:MD 0.16 kg,-0.58至0.90;I² = 29%;中等确定性证据)可能影响很小或无影响。与安慰剂相比,DPP-4抑制剂对心力衰竭、上呼吸道感染和肝功能损害可能影响很小或无影响(低确定性证据)。与安慰剂相比,DPP-4抑制剂对eGFR、低血糖、胰腺炎、胰腺癌或因不良反应停药是否有任何影响尚不确定(极低确定性证据)。与安慰剂相比,GLP-1激动剂可能降低HbA(7项研究,867名参与者:MD -0.53%,-1.01至-0.06(-5.8 mmol/mol,-11.0至-0.7);I² = 41%;中等确定性证据),可能减轻体重(低确定性证据)。GLP-1激动剂对eGFR、低血糖或因不良反应停药可能影响很小或无影响(低确定性证据)。GLP-1激动剂是否降低FBG、增加胃肠道症状或影响胰腺炎风险尚不确定(极低确定性证据)。与安慰剂相比,格列酮类药物对HbA1c、FBG、死亡、体重和低血糖风险是否有任何影响尚不确定(极低确定性证据)。与格列吡嗪相比,西他列汀可能降低低血糖发生率(2项研究,551名参与者:RR 0.40,0.23至0.69;I² = 0%;中等确定性证据)。与格列吡嗪相比,西他列汀对HbA1c、FBG、体重和eGFR可能影响很小或无影响(低确定性证据)。与格列吡嗪相比,西他列汀对死亡或因不良反应停药是否有任何影响尚不确定(极低确定性证据)。对于胰岛素的类型、剂量或给药方式以及其他直接比较,仅有个别研究,因此无法得出结论。

作者结论

关于降糖药物在糖尿病合并CKD患者中的疗效和安全性的证据有限。SGLT2抑制剂和GLP-1激动剂可能对降糖有效,DPP-4抑制剂可能对降糖有效。此外,SGLT2抑制剂可能降低血压、心力衰竭和高钾血症,但增加生殖器感染,并轻微增加肌酐。GLP-1激动剂的安全性尚不明确。对于包括胰岛素在内的其他降糖药物类别,无法得出进一步结论。需要更多高质量的研究来帮助指导糖尿病合并CKD患者降糖治疗的选择。

相似文献

1
Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease.
Cochrane Database Syst Rev. 2018 Sep 24;9(9):CD011798. doi: 10.1002/14651858.CD011798.pub2.
2
Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients.
Cochrane Database Syst Rev. 2020 Jul 30;8(8):CD009966. doi: 10.1002/14651858.CD009966.pub3.
3
Immunosuppressive treatment for primary membranous nephropathy in adults with nephrotic syndrome.
Cochrane Database Syst Rev. 2021 Nov 15;11(11):CD004293. doi: 10.1002/14651858.CD004293.pub4.
4
Peritoneal dialysis versus haemodialysis for people commencing dialysis.
Cochrane Database Syst Rev. 2024 Jun 20;6(6):CD013800. doi: 10.1002/14651858.CD013800.pub2.
5
Interventions for minimal change disease in adults with nephrotic syndrome.
Cochrane Database Syst Rev. 2022 Mar 1;3(3):CD001537. doi: 10.1002/14651858.CD001537.pub5.
6
Antiplatelet agents for chronic kidney disease.
Cochrane Database Syst Rev. 2022 Feb 28;2(2):CD008834. doi: 10.1002/14651858.CD008834.pub4.
7
Interventions for chronic non-hypovolaemic hypotonic hyponatraemia.
Cochrane Database Syst Rev. 2018 Jun 28;6(6):CD010965. doi: 10.1002/14651858.CD010965.pub2.
8
Antidepressants for low back pain and spine-related leg pain.
Cochrane Database Syst Rev. 2025 Mar 10;3(3):CD001703. doi: 10.1002/14651858.CD001703.pub4.
9
Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients.
Cochrane Database Syst Rev. 2017 Feb 27;2(2):CD009966. doi: 10.1002/14651858.CD009966.pub2.
10
Acupuncture for treating overactive bladder in adults.
Cochrane Database Syst Rev. 2022 Sep 23;9(9):CD013519. doi: 10.1002/14651858.CD013519.pub2.

引用本文的文献

1
The Effect of 50% Dextrose on Serum Glucose Levels in Adult Hypoglycemic Patients: A Prospective Observational Study.
Cureus. 2025 Mar 10;17(3):e80375. doi: 10.7759/cureus.80375. eCollection 2025 Mar.
2
Glucagon-like peptide 1 (GLP-1) receptor agonists for people with chronic kidney disease and diabetes.
Cochrane Database Syst Rev. 2025 Feb 18;2(2):CD015849. doi: 10.1002/14651858.CD015849.pub2.
3
Biochemical evaluation of novel thiazolone derivatives as dual α-glucosidase/α-amylase inhibitors, anti-inflammatory agents.
Future Med Chem. 2025 Jan;17(2):209-219. doi: 10.1080/17568919.2024.2447225. Epub 2024 Dec 29.
4
Hypoglycemic agents and bone health; an umbrella systematic review of the clinical trials' meta-analysis studies.
Diabetol Metab Syndr. 2024 Dec 23;16(1):310. doi: 10.1186/s13098-024-01518-2.
7
Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors for people with chronic kidney disease and diabetes.
Cochrane Database Syst Rev. 2024 May 21;5(5):CD015588. doi: 10.1002/14651858.CD015588.pub2.

本文引用的文献

2
DEVOTE 3: temporal relationships between severe hypoglycaemia, cardiovascular outcomes and mortality.
Diabetologia. 2018 Jan;61(1):58-65. doi: 10.1007/s00125-017-4422-0. Epub 2017 Sep 15.
3
Empagliflozin and Clinical Outcomes in Patients With Type 2 Diabetes Mellitus, Established Cardiovascular Disease, and Chronic Kidney Disease.
Circulation. 2018 Jan 9;137(2):119-129. doi: 10.1161/CIRCULATIONAHA.117.028268. Epub 2017 Sep 13.
4
Liraglutide and Renal Outcomes in Type 2 Diabetes.
N Engl J Med. 2017 Aug 31;377(9):839-848. doi: 10.1056/NEJMoa1616011.
6
Comment on American Diabetes Association. . Diabetes Care 2017;40(Suppl. 1):S1-S135.
Diabetes Care. 2017 Jul;40(7):e92-e93. doi: 10.2337/dc17-0299.
9
Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes.
N Engl J Med. 2017 Aug 24;377(8):723-732. doi: 10.1056/NEJMoa1615692. Epub 2017 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验