Climate Change Cluster , University of Technology Sydney , Ultimo, Sydney 2007 , New South Wales , Australia.
Department of Biology , Mount Allison University , Sackville , New Brunswick E4L 1E4 , Canada.
Environ Sci Technol. 2018 Nov 6;52(21):12039-12054. doi: 10.1021/acs.est.8b03488. Epub 2018 Oct 5.
Assessing phytoplankton productivity over space and time remains a core goal for oceanographers and limnologists. Fast Repetition Rate fluorometry (FRRf) provides a potential means to realize this goal with unprecedented resolution and scale yet has not become the "go-to" method despite high expectations. A major obstacle is difficulty converting electron transfer rates to equivalent rates of C-fixation most relevant for studies of biogeochemical C-fluxes. Such difficulty stems from methodological inconsistencies and our limited understanding of how the electron requirement for C-fixation (Φ) is influenced by the environment and by differences in the composition and physiology of phytoplankton assemblages. We outline a "roadmap" for limiting methodological bias and to develop a more mechanistic understanding of the ecophysiology underlying Φ. We 1) re-evaluate core physiological processes governing how microalgae invest photosynthetic electron transport-derived energy and reductant into stored carbon versus alternative sinks. Then, we 2) outline steps to facilitate broader uptake and exploitation of FRRf, which could transform our knowledge of aquatic primary productivity. We argue it is time to 3) revise our historic methodological focus on carbon as the currency of choice, to 4) better appreciate that electron transport fundamentally drives ecosystem biogeochemistry, modulates cell-to-cell interactions, and ultimately modifies community biomass and structure.
评估浮游植物生产力在空间和时间上的变化仍然是海洋学家和湖沼学家的核心目标。快速重复率荧光法(FRRf)提供了一种潜在的手段,可以以前所未有的分辨率和规模来实现这一目标,但尽管人们寄予厚望,它却尚未成为“首选”方法。一个主要障碍是难以将电子传递率转换为与生物地球化学 C 通量研究最相关的等效 C 固定率。这种困难源于方法上的不一致性,以及我们对 C 固定(Φ)的电子需求如何受到环境以及浮游植物组合的组成和生理差异的影响的理解有限。我们概述了一条“路线图”,以限制方法上的偏差,并对Φ 所基于的生态生理学有更深入的了解。我们 1)重新评估控制微藻将光合作用电子传递产生的能量和还原剂投入到储存碳中还是其他替代汇中的核心生理过程。然后,我们 2)概述了促进 FRRf 更广泛应用和利用的步骤,这可能会改变我们对水生初级生产力的认识。我们认为,现在是时候 3)修正我们历史上对碳作为首选货币的方法学重点,4)更好地认识到电子传递从根本上驱动了生态系统的生物地球化学,调节了细胞间的相互作用,并最终改变了群落的生物量和结构。