State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau , Macau 999078 , China.
Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University , Suzhou 215123 , China.
Nano Lett. 2018 Oct 10;18(10):6360-6368. doi: 10.1021/acs.nanolett.8b02720. Epub 2018 Sep 27.
The recent years have witnessed the blooming of cancer immunotherapy, as well as their combinational use together with other existing cancer treatment techniques including radiotherapy. However, hypoxia is one of several causes of the immunosuppressive tumor microenvironment (TME). Herein, we develop an innovative strategy to relieve tumor hypoxia by delivering exogenous HO into tumors and the subsequent catalase-triggered HO decomposition. In our experiment, HO and catalase are separately loaded within stealthy liposomes. After intravenous (iv) preinjection of CAT@liposome, another dose of HO@liposome is injected 4 h later. The sustainably released HO could be decomposed by CAT@liposome, resulting in a long lasting effect in tumor oxygenation enhancement. As the result, the combination treatment by CAT@liposome plus HO@liposome offers remarkably enhanced therapeutic effects in cancer radiotherapy as observed in a mouse tumor model as well as a more clinically relevant patient-derived xenograft tumor model. Moreover, the relieved tumor hypoxia would reverse the immunosuppressive TME to favor antitumor immunities, further enhancing the combined radio-immunotherapy with cytotoxic T lymphocyte-associated antigen 4 (CTLA4) blockade. This work presents a simple yet effective strategy to promote tumor oxygenation via sequential delivering catalase and exogenous HO into tumors using well-established liposomal carriers, showing great potential for clinical translation in radio-immunotherapy of cancer.
近年来,癌症免疫疗法蓬勃发展,它们与其他现有的癌症治疗技术(包括放射疗法)联合使用。然而,缺氧是免疫抑制性肿瘤微环境(TME)的几个原因之一。在此,我们开发了一种创新策略,通过向肿瘤中递外源性 HO 并随后触发过氧化氢酶触发的 HO 分解来缓解肿瘤缺氧。在我们的实验中,HO 和过氧化氢酶分别装载在隐形脂质体中。在静脉(iv)预注射 CAT@liposome 后 4 小时再注射另一剂量的 HO@liposome。持续释放的 HO 可被 CAT@liposome 分解,从而在肿瘤氧合增强方面产生持久的效果。结果,CAT@liposome 加 HO@liposome 的联合治疗在小鼠肿瘤模型以及更具临床相关性的患者来源异种移植肿瘤模型中观察到显著增强的癌症放射治疗效果。此外,缓解的肿瘤缺氧会逆转免疫抑制的 TME,有利于抗肿瘤免疫,进一步增强与细胞毒性 T 淋巴细胞相关抗原 4(CTLA4)阻断的联合放射免疫治疗。这项工作提出了一种简单而有效的策略,通过使用成熟的脂质体载体将过氧化氢酶和外源性 HO 顺序递送至肿瘤中,以促进肿瘤氧合,在癌症放射免疫治疗的临床转化中具有很大的潜力。
Mater Today Bio. 2025-3-1
Theranostics. 2025-1-1
J Nanobiotechnology. 2024-11-27
Bioact Mater. 2024-7-2
Int J Nanomedicine. 2024
Proc Natl Acad Sci U S A. 2024-5-14
Asian J Pharm Sci. 2024-4