School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia.
School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia.
Sci Total Environ. 2018 Dec 15;645:1474-1483. doi: 10.1016/j.scitotenv.2018.07.135. Epub 2018 Jul 24.
Delivering nutrients from mineral or organic fertilizers out of synchrony with crop uptake causes inefficiencies and pollution. We explore methodologies for evaluating sorbents as additives to organic agricultural wastes to retain nitrogen in an exchangeable form and deliver at rates that approximate the uptake capacity of roots. Focussing on ammonium (NH) as the main inorganic nitrogen form in the studied wastes (sugarcane mill mud, poultry litter), we tested geo-sorbents and biochar for their ability to retain NH. Sorption capacity was ranked palagonite < bentonite, biochar, vermiculite < chabazite, clinoptilolite (5.7 to 24.3 mg NH g sorbent). Sorbent-waste formulations were analysed for sorption capacity, leaching and fluxes of NH. Ammonium-sorption capacity broadly translated to sorbent-waste formulations with clinoptilolite conferring the strongest NH attenuation (80%), and palagonite the lowest (7%). A 1:1 ratio of sorbent:waste achieved stronger sorption than a 0.5:1 ratio, and similar sorption as a 1:1.5 ratio. In line with these results, clinoptilolite-amended wastes had the lowest in situ NH fluxes, which exceeded the NH uptake capacity (I) of sugarcane and sorghum roots 9 to 84-fold, respectively. Less efficient sorbent-waste formulations and un-amended wastes exceeded I of crop roots up to 274-fold. Roots preferentially colonized stronger sorbent-waste formulations and avoided weaker ones, suggesting that lower NH fluxes generate a more favourable growth environment. This study contributes methodologies to identify suitable sorbents to formulate organic wastes as next-generation fertilizers with view of a crop's nutrient physiology. Efficient re-purposing of wastes can improve nutrient use efficiency in agriculture and support the circular nutrient economy.
从矿物或有机肥料中输送养分与作物吸收不同步会导致效率低下和污染。我们探索了将吸附剂评估为有机农业废物添加剂的方法,以将氮保留在可交换形式中,并以接近根系吸收能力的速率释放。本文以铵(NH)作为研究废物(糖厂泥浆、家禽粪便)中主要的无机氮形式,测试了地质吸附剂和生物炭对其保留 NH 的能力。吸附能力的排序为:珍珠岩<膨润土、生物炭、蛭石<丝光沸石、斜发沸石(5.7 至 24.3 mg NH g 吸附剂)。对吸附剂-废物配方进行了吸附能力、浸出和 NH 通量分析。吸附能力与吸附剂-废物配方大致相关,斜发沸石赋予最强的 NH 衰减(80%),珍珠岩最低(7%)。吸附剂-废物的 1:1 比例比 0.5:1 比例的吸附能力更强,与 1:1.5 比例的吸附能力相似。根据这些结果,斜发沸石改良废物的原位 NH 通量最低,分别超过了甘蔗和高粱根系的 NH 吸收能力(I)的 9 至 84 倍。效率较低的吸附剂-废物配方和未经改良的废物的 NH 通量最高可达作物根系的 I 的 274 倍以上。根系优先定植于吸附能力较强的废物配方,而避免了吸附能力较弱的废物配方,这表明较低的 NH 通量产生了更有利的生长环境。本研究提供了鉴定合适吸附剂的方法,将有机废物配制成具有作物养分生理学观点的下一代肥料。有效重新利用废物可以提高农业中的养分利用效率,并支持循环养分经济。