Suppr超能文献

基于小波变换的拉曼光谱背景校正改进算法。

An Improved Background-Correction Algorithm for Raman Spectroscopy Based on the Wavelet Transform.

机构信息

1 State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.

2 University of Chinese Academy of Sciences, Beijing, China.

出版信息

Appl Spectrosc. 2019 Jan;73(1):78-87. doi: 10.1177/0003702818805116. Epub 2018 Nov 29.

Abstract

In the traditional background correction algorithm based on the wavelet transform, approximation coefficients considered as frequency responses of background signal are usually set to zero. However, there are many meaningless negative values generated in the background-corrected spectrum because of the calibration errors of this algorithm. Intensities of some weak peaks even become negative and these peaks will disappear after the calibration of negative values. To solve these problems for the background correction of Raman spectrum, an improved intelligent algorithm which utilizes a suppression coefficient to modify approximation coefficients is proposed in this paper. A series of simulation analyses, as well as experimental investigations, are made to test the performance of this algorithm. It is proved that the use of the suppression coefficient could increase the background correction accuracy and decrease the number of meaningless negative values in the reconstructed spectra, which will prevent the disappearance of weak Raman peaks after the calibration of negative values and increase the sensitivity of Raman spectral analysis.

摘要

在基于小波变换的传统背景校正算法中,通常将逼近系数视为背景信号的频率响应,并将其设置为零。然而,由于该算法的校准误差,在背景校正光谱中会产生许多无意义的负数值。一些弱峰的强度甚至变为负值,并且这些峰在对负值进行校准后将会消失。为了解决拉曼光谱背景校正中存在的这些问题,本文提出了一种利用抑制系数来修正逼近系数的改进型智能算法。通过一系列的模拟分析和实验研究,对该算法的性能进行了测试。结果表明,使用抑制系数可以提高背景校正的准确性,并减少重建光谱中无意义的负数值的数量,从而防止在对负值进行校准后弱拉曼峰的消失,并提高拉曼光谱分析的灵敏度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验