Suppr超能文献

极性子超流体的流体动力学和二维暗孤子。

Hydrodynamics and two-dimensional dark lump solitons for polariton superfluids.

机构信息

Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, Athens 15784, Greece.

Department of Mathematics, University of Ioannina, Ioannina 45110, Greece.

出版信息

Phys Rev E. 2018 Aug;98(2-1):022205. doi: 10.1103/PhysRevE.98.022205.

Abstract

We study a two-dimensional incoherently pumped exciton-polariton condensate described by an open-dissipative Gross-Pitaevskii equation for the polariton dynamics coupled to a rate equation for the exciton density. Adopting a hydrodynamic approach, we use multiscale expansion methods to derive several models appearing in the context of shallow water waves with viscosity. In particular, we derive a Boussinesq/Benney-Luke-type equation and its far-field expansion in terms of Kadomtsev-Petviashvili-I (KP-I) equations for right- and left-going waves. From the KP-I model, we predict the existence of vorticity-free, weakly (algebraically) localized two-dimensional dark-lump solitons. We find that, in the presence of dissipation, dark lumps exhibit a lifetime three times larger than that of planar dark solitons. Direct numerical simulations show that dark lumps do exist, and their dissipative dynamics is well captured by our analytical approximation. It is also shown that lumplike and vortexlike structures can spontaneously be formed as a result of the transverse "snaking" instability of dark soliton stripes.

摘要

我们研究了一个二维非相干泵浦激子极化激元凝聚体,它由一个描述极化激元动力学的开放耗散 Gross-Pitaevskii 方程和一个描述激子密度的速率方程耦合而成。采用流体力学方法,我们使用多尺度扩展方法推导出了几个在浅水波中出现的模型,其中包括粘性的 Boussinesq/Benney-Luke 型方程及其在右行和左行波中的 Kadomtsev-Petviashvili-I (KP-I) 方程的远场展开式。从 KP-I 模型中,我们预测了存在无旋、弱(代数)局域二维暗孤子的存在性。我们发现,在存在耗散的情况下,暗孤子的寿命比平面暗孤子的寿命长三倍。直接数值模拟表明,暗孤子确实存在,并且它们的耗散动力学可以通过我们的分析近似很好地捕捉到。还表明,由于暗孤子条纹的横向“蛇形”不稳定性,可以自发地形成类孤子和类涡旋结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验