Department of Chemical and Materials Engineering , University of Alberta , 9211-116 Street NW , Edmonton , Alberta T6G 1H9 , Canada.
Langmuir. 2018 Oct 9;34(40):12191-12198. doi: 10.1021/acs.langmuir.8b02062. Epub 2018 Sep 26.
Over the past decade, there has been a debate over the correct form of the Cassie-Baxter equation, which describes the expected contact angle of a liquid drop on a heterogeneous surface. The original Cassie-Baxter equation uses an area fraction of each solid phase calculated over the entirety of the surface, and its derivation is based on an assumption not all surfaces necessarily satisfy. Herein, we introduce fundamental Gibbsian composite-system thermodynamics as a new approach for deriving the complete set of equilibrium conditions for a liquid drop resting on a heterogeneous multiphase solid substrate. One of the equilibrium conditions is a form of the Cassie-Baxter equation that uses a line fraction determined at the contact line outlining the perimeter of the solid-liquid contact area. We elucidate the practical implications of using the line fraction for common patterns of heterogeneities.
在过去的十年中,关于描述液滴在非均匀表面上预期接触角的 Cassie-Baxter 方程的正确形式一直存在争议。原始的 Cassie-Baxter 方程使用整个表面上每个固相的面积分数来计算,其推导基于并非所有表面都必然满足的假设。在此,我们引入基本的 Gibbsian 复合系统热力学作为一种新方法,用于推导出液滴在多相不均匀固体基底上的平衡条件的完整集合。平衡条件之一是一种 Cassie-Baxter 方程的形式,它使用在界定固-液接触区域周边的接触线处确定的线分数。我们阐明了在常见的非均匀性模式中使用线分数的实际意义。