文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过生化方法评估蓝鲨皮胶原蛋白对分化骨细胞增殖的影响及其在骨组织工程中的应用。

Evaluation of Differentiated Bone Cells Proliferation by Blue Shark Skin Collagen via Biochemical for Bone Tissue Engineering.

机构信息

Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 606791, Korea.

出版信息

Mar Drugs. 2018 Sep 25;16(10):350. doi: 10.3390/md16100350.


DOI:10.3390/md16100350
PMID:30257422
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6212988/
Abstract

Collagen from a marine resource is believed to have more potential activity in bone tissue engineering and their bioactivity depends on biochemical and structural properties. Considering the above concept, pepsin soluble collagen (PSC) and acid soluble collagen (ASC) from blue shark () skin were extracted and its biochemical and osteogenic properties were investigated. The hydroxyproline content was higher in PSC than ASC and the purified collagens contained three distinct bands α₁, α and β dimer. The purity of collagen was confirmed by the RP-HPLC profile and the thermogravimetric data showed a two-step thermal degradation pattern. ASC had a sharp decline in viscosity at 20⁻30 °C. Scanning electron microscope (SEM) images revealed the fibrillar network structure of collagens. Proliferation rates of the differentiated mouse bone marrow-mesenchymal stem (dMBMS) and differentiated osteoblastic (dMC3T3E1) cells were increased in collagen treated groups rather than the controls and the effect was dose-dependent, which was further supported by higher osteogenic protein and mRNA expression in collagen treated bone cells. Among two collagens, PSC had significantly increased dMBMS cell proliferation and this was materialized through increasing RUNX2 and collagen-I expression in bone cells. Accordingly, the collagens from blue shark skin with excellent biochemical and osteogenic properties could be a suitable biomaterial for therapeutic application.

摘要

从海洋资源中提取的胶原蛋白被认为在骨组织工程中具有更大的潜在活性,其生物活性取决于生化和结构特性。基于上述概念,从蓝鲨皮中提取了胃蛋白酶可溶性胶原蛋白(PSC)和酸溶性胶原蛋白(ASC),并对其生化和成骨特性进行了研究。PSC 的羟脯氨酸含量高于 ASC,且纯化的胶原蛋白含有三条明显的 α₁、α 和 β 二聚体带。反相高效液相色谱(RP-HPLC)图谱证实了胶原蛋白的纯度,热重数据显示其具有两步热降解模式。ASC 在 20-30°C 时粘度急剧下降。扫描电子显微镜(SEM)图像显示了胶原蛋白的纤维状网络结构。与对照组相比,胶原蛋白处理组的分化小鼠骨髓间充质干细胞(dMBMS)和分化成骨细胞(dMC3T3E1)的增殖率增加,且呈剂量依赖性,胶原蛋白处理的成骨细胞中骨形成蛋白和 mRNA 表达增加进一步支持了这一结果。在这两种胶原蛋白中,PSC 显著增加了 dMBMS 细胞的增殖,这是通过增加成骨细胞中 RUNX2 和胶原蛋白-I 的表达来实现的。因此,具有优异生化和成骨特性的蓝鲨皮胶原蛋白可能是一种适合治疗应用的生物材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/b6a80282e0ab/marinedrugs-16-00350-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/455d6fdfe170/marinedrugs-16-00350-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/35bb789ab328/marinedrugs-16-00350-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/ca40767ffe84/marinedrugs-16-00350-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/3167ae6cd15d/marinedrugs-16-00350-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/e4fde66d6d81/marinedrugs-16-00350-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/aae574210a71/marinedrugs-16-00350-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/adfda96fdf99/marinedrugs-16-00350-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/ce8bf35a2779/marinedrugs-16-00350-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/b6a80282e0ab/marinedrugs-16-00350-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/455d6fdfe170/marinedrugs-16-00350-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/35bb789ab328/marinedrugs-16-00350-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/ca40767ffe84/marinedrugs-16-00350-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/3167ae6cd15d/marinedrugs-16-00350-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/e4fde66d6d81/marinedrugs-16-00350-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/aae574210a71/marinedrugs-16-00350-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/adfda96fdf99/marinedrugs-16-00350-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/ce8bf35a2779/marinedrugs-16-00350-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2885/6212988/b6a80282e0ab/marinedrugs-16-00350-g009.jpg

相似文献

[1]
Evaluation of Differentiated Bone Cells Proliferation by Blue Shark Skin Collagen via Biochemical for Bone Tissue Engineering.

Mar Drugs. 2018-9-25

[2]
Comparison of Physicochemical and Structural Properties of Acid-Soluble and Pepsin-Soluble Collagens from Blacktip Reef Shark Skin.

Mar Drugs. 2022-6-2

[3]
Physicochemical and Functional Properties of Type I Collagens in Red Stingray () Skin.

Mar Drugs. 2019-9-28

[4]
Comparison of Physicochemical Characteristics and Fibril Formation Ability of Collagens Extracted from the Skin of Farmed River Puffer () and Tiger Puffer ().

Mar Drugs. 2019-8-7

[5]
Collagens from the skin of arabesque greenling (Pleurogrammus azonus) solubilized with the aid of acetic acid and pepsin from albacore tuna (Thunnus alalunga) stomach.

J Sci Food Agric. 2010-7

[6]
Preparation, Physicochemical and Antioxidant Properties of Acid- and Pepsin-Soluble Collagens from the Swim Bladders of Miiuy Croaker ().

Mar Drugs. 2018-5-12

[7]
Comparative study on acid-soluble and pepsin-soluble collagens from skin and swim bladder of grass carp (Ctenopharyngodon idella).

J Sci Food Agric. 2016-2

[8]
Physicochemical and Biocompatibility Properties of Type I Collagen from the Skin of Nile Tilapia () for Biomedical Applications.

Mar Drugs. 2019-2-26

[9]
Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

Br J Oral Maxillofac Surg. 2014-5

[10]
Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.

Tissue Eng Regen Med. 2019-1-29

引用本文的文献

[1]
Unlocking the Potential of Marine Sidestreams in the Blue Economy: Lessons Learned from the EcoeFISHent Project on Fish Collagen.

Mar Biotechnol (NY). 2025-3-13

[2]
Enhancing Physicochemical and Piezoelectric Properties of Eggshell Membrane Proteins by Ultrasonic-Assisted Enzymes for Food and Sensor Applications.

Int J Mol Sci. 2025-2-28

[3]
The Role of Integrin Receptor's α and β Subunits of Mouse Mesenchymal Stem Cells on the Interaction of Marine-Derived Blacktip Reef Shark () Skin Collagen.

Int J Mol Sci. 2023-5-23

[4]
Proliferative and Osteogenic Supportive Effect of VEGF-Loaded Collagen-Chitosan Hydrogel System in Bone Marrow Derived Mesenchymal Stem Cells.

Pharmaceutics. 2023-4-20

[5]
Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen.

Molecules. 2023-1-24

[6]
Application of marine collagen for stem-cell-based therapy and tissue regeneration (Review).

Med Int (Lond). 2021-6-23

[7]
An In Vivo Study to Evaluate the Efficacy of Blue Shark () Cartilage Collagen as a Cosmetic.

Mar Drugs. 2022-10-5

[8]
Growth Factor-Free Vascularization of Marine-Origin Collagen Sponges Using Cryopreserved Stromal Vascular Fractions from Human Adipose Tissue.

Mar Drugs. 2022-9-30

[9]
Extraction of Biocompatible Collagen From Blue Shark Skins Through the Conventional Extraction Process Intensification Using Natural Deep Eutectic Solvents.

Front Chem. 2022-6-16

[10]
Comparison of Physicochemical and Structural Properties of Acid-Soluble and Pepsin-Soluble Collagens from Blacktip Reef Shark Skin.

Mar Drugs. 2022-6-2

本文引用的文献

[1]
Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications.

Mar Drugs. 2018-8-3

[2]
Cross-talk between primary osteocytes and bone marrow macrophages for osteoclastogenesis upon collagen treatment.

Sci Rep. 2018-3-28

[3]
Type II collagen and gelatin from silvertip shark (Carcharhinus albimarginatus) cartilage: isolation, purification, physicochemical and antioxidant properties.

Mar Drugs. 2014-6-27

[4]
The effect of type II collagen on MSC osteogenic differentiation and bone defect repair.

Biomaterials. 2014-1-8

[5]
Preparation and characterisation of type I and V collagens from the skin of Amur sturgeon (Acipenser schrenckii).

Food Chem. 2013-10-25

[6]
MSC-seeded dense collagen scaffolds with a bolus dose of VEGF promote healing of large bone defects.

Eur Cell Mater. 2013-10-13

[7]
3D-culture system for heart regeneration and cardiac medicine.

Biomed Res Int. 2013-9-8

[8]
The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats.

Acta Biomater. 2013-4-17

[9]
In vivo biological responses and bioresorption of tilapia scale collagen as a potential biomaterial.

J Biomater Sci Polym Ed. 2009

[10]
The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces.

Biomaterials. 2009-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索