Suppr超能文献

工艺参数对生产低分子量解聚硫酸盐木质素的黑液水解处理的影响。

Effects of Process Parameters on Hydrolytic Treatment of Black Liquor for the Production of Low-Molecular-Weight Depolymerized Kraft Lignin.

机构信息

Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada.

FPInnovations, 570 boul. Saint-Jean, Pointe-Claire, QC H9R 3J9, Canada.

出版信息

Molecules. 2018 Sep 26;23(10):2464. doi: 10.3390/molecules23102464.

Abstract

The present research work aimed at hydrolytic treatment of kraft black liquor (KBL) at 200⁻300 °C for the production of low-molecular-weight depolymerized kraft lignin (DKL). Various process conditions such as reaction temperature, reaction time, initial kraft lignin (KL) substrate concentration, presence of a catalyst (NaOH), capping agent (phenol) or co-solvent (methanol) were evaluated. The research demonstrated effective depolymerization of KL in KBL at 250⁻300 °C with NaOH as a catalyst at a NaOH/lignin ratio of about 0.3 (/) using diluted KBL (with 9 wt. % KL). Treatment of the diluted KBL at 250 °C for 2 h with 5% addition of methanol co-solvent produced DKL with a weight-average molecular weight (M) of 2340 Da, at approx. 45 wt. % yield, and a solid residue at a yield of ≤1 wt. %. A longer reaction time favored the process by reducing the M of the DKL products. Adding a capping agent (phenol) helped reduce repolymerization/condensation reactions thereby reducing the M of the DKL products, enhancing DKL yield and increasing the hydroxyl group content of the lignin. For the treatment of diluted KBL (with 9 wt. % KL) at 250 °C for 2 h, with 5% addition of methanol co-solvent in the presence of NaOH/lignin ≈ 0.3 (/), followed by acidification to recover the DKL, the overall mass balances for C, Na and S were measured to be approx. 74%, 90% and 77%, respectively. These results represent an important step towards developing a cost-effective approach for valorization of KBL for chemicals.

摘要

本研究工作旨在 200-300°C 下对硫酸盐木浆黑液(KBL)进行水解处理,以生产低分子量的降解硫酸盐木质素(DKL)。评估了各种工艺条件,如反应温度、反应时间、初始硫酸盐木质素(KL)底物浓度、催化剂(NaOH)、封端剂(苯酚)或共溶剂(甲醇)的存在。研究表明,在 250-300°C 下,用 NaOH 作为催化剂,在 NaOH/木质素比约为 0.3(/)的情况下,用稀释的 KBL(含 9wt%KL)可以有效地对 KBL 中的 KL 进行解聚。在 250°C 下用 5%甲醇共溶剂处理稀释的 KBL 2 小时,可得到重均分子量(M)为 2340Da 的 DKL,产率约为 45wt%,固体残渣产率≤1wt%。较长的反应时间通过降低 DKL 产物的 M 有利于该过程。添加封端剂(苯酚)有助于减少重聚/缩合反应,从而降低 DKL 产物的 M,提高 DKL 的产率并增加木质素的羟基含量。对于在 250°C 下用 5%甲醇共溶剂处理稀释的 KBL(含 9wt%KL)2 小时,在 NaOH/木质素≈0.3(/)的存在下,随后酸化回收 DKL,测量 C、Na 和 S 的总质量平衡分别约为 74%、90%和 77%。这些结果代表着开发一种经济有效的方法来实现 KBL 化学品增值的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb40/6222783/b3dd82d69a7f/molecules-23-02464-g001.jpg

相似文献

2
Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters.
Bioresour Technol. 2013 Jul;139:13-20. doi: 10.1016/j.biortech.2013.03.199. Epub 2013 Apr 6.
3
Sustainable Bio-Based Phenol-Formaldehyde Resoles Using Hydrolytically Depolymerized Kraft Lignin.
Molecules. 2017 Oct 28;22(11):1850. doi: 10.3390/molecules22111850.
4
Hydrolytic depolymerization of hydrolysis lignin: Effects of catalysts and solvents.
Bioresour Technol. 2015 Aug;190:416-9. doi: 10.1016/j.biortech.2015.04.074. Epub 2015 Apr 27.
5
Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.
Bioresour Technol. 2010 Dec;101(23):9308-13. doi: 10.1016/j.biortech.2010.06.140. Epub 2010 Jul 27.
6
Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source.
Bioresour Technol. 2014 Nov;171:95-102. doi: 10.1016/j.biortech.2014.08.045. Epub 2014 Aug 17.
8
Catalytic depolymerization of lignin in supercritical ethanol.
ChemSusChem. 2014 Aug;7(8):2276-88. doi: 10.1002/cssc.201402094. Epub 2014 May 27.
9
Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin.
Bioresour Technol. 2016 Dec;221:568-575. doi: 10.1016/j.biortech.2016.09.043. Epub 2016 Sep 13.

引用本文的文献

1
Sustainability through lignin valorization: recent innovations and applications driving industrial transformation.
Bioresour Bioprocess. 2025 Aug 22;12(1):88. doi: 10.1186/s40643-025-00929-x.
2
Enterobacter spp. isolates from an underground coal mine reveal ligninolytic activity.
BMC Microbiol. 2024 Oct 1;24(1):382. doi: 10.1186/s12866-024-03537-5.

本文引用的文献

2
Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density.
Bioresour Technol. 2017 Aug;238:684-689. doi: 10.1016/j.biortech.2017.04.079. Epub 2017 Apr 22.
3
Lignin depolymerisation strategies: towards valuable chemicals and fuels.
Chem Soc Rev. 2014 Nov 21;43(22):7485-500. doi: 10.1039/c4cs00235k.
4
Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source.
Bioresour Technol. 2014 Nov;171:95-102. doi: 10.1016/j.biortech.2014.08.045. Epub 2014 Aug 17.
5
Towards quantitative catalytic lignin depolymerization.
Chemistry. 2011 May 16;17(21):5939-48. doi: 10.1002/chem.201002438. Epub 2011 Apr 6.
6
Depolymerization of steam-treated lignin for the production of green chemicals.
Bioresour Technol. 2011 Apr;102(7):4917-20. doi: 10.1016/j.biortech.2011.01.010. Epub 2011 Jan 13.
7
Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.
Bioresour Technol. 2010 Dec;101(23):9308-13. doi: 10.1016/j.biortech.2010.06.140. Epub 2010 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验