Zhang Yajun, Wang Xinliang, Williams Jacob, Huang Zhongyuan, Falkner D'Lauren, Zhou Gang, Yang Yuguang, Dong Liqun, Jin Zhiming, Zhuang Jian, Wang Zhe, Liu Zhen
College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Ningbo L.K. technology Co. Ltd, Ningbo Zhejiang 315806, China.
CAAI Trans Intell Technol. 2017 Sep;2(3):157-166.
With the advent of intelligence, more and more machines and devices involve the creation of complex structures. In the intelligent manufacturing industries, moldings including injection molding, blow molding, compression molding and others play critical roles in manufacturing the highly precise parts required for building intelligent machines (such as computers, cell phones, robots, etc.). The performance of the clamping mechanism directly affects the quality of the microstructure of injection products. The design of injection molding mold clamping mechanism is based on the microstructure characteristics of the trip of toggle lever mechanism ratio, speed ratio, and force amplification ratio. These are used to study the main performance parameters, such as analysis, as well as for the establishment of the physical model of the clamping mechanism. The model is based on the microstructure of injection of hyperbolic elbow clamping mechanism kinematics simulation. Simulation results and the theoretical calculation contrast analysis shows that the maximum dynamic template speed is 215.34 mm/s. The dynamic templates and crosshead speed ratio is 2.15, therefore the design of injection molding mold clamping mechanism for microstructure provides favorable technical support. The method described here is important to build complicated molds required to build highly precise parts to build intelligent machineries.
随着智能化的到来,越来越多的机器和设备涉及到复杂结构的制造。在智能制造行业中,包括注塑成型、吹塑成型、压缩成型等在内的成型工艺在制造构建智能机器(如计算机、手机、机器人等)所需的高精度零件方面发挥着关键作用。合模机构的性能直接影响注塑产品微观结构的质量。注塑成型合模机构的设计基于肘杆机构行程比、速度比和力放大比的微观结构特性。这些用于研究主要性能参数,如进行分析,以及建立合模机构的物理模型。该模型基于注塑双曲线肘杆合模机构运动学模拟的微观结构。模拟结果与理论计算对比分析表明,动模板最大速度为215.34mm/s。动模板与十字头速度比为2.15,因此注塑成型合模机构微观结构设计提供了有利的技术支持。这里描述的方法对于制造构建智能机械所需高精度零件的复杂模具很重要。