Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
Department of Astronomy, University of California, Berkeley, CA 94720
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):E9755-E9764. doi: 10.1073/pnas.1808578115. Epub 2018 Oct 1.
The search for technosignatures from hypothetical galactic civilizations is going through a new phase of intense activity. For the first time, a significant fraction of the vast search space is expected to be sampled in the foreseeable future, potentially bringing informative data about the abundance of detectable extraterrestrial civilizations or the lack thereof. Starting from the current state of ignorance about the galactic population of nonnatural electromagnetic signals, we formulate a Bayesian statistical model to infer the mean number of radio signals crossing Earth, assuming either nondetection or the detection of signals in future surveys of the Galaxy. Under fairly noninformative priors, we find that not detecting signals within about 1 kly from Earth, while suggesting the lack of galactic emitters or at best the scarcity thereof, is nonetheless still consistent with a probability exceeding 10% that typically over [Formula: see text] signals could be crossing Earth, with radiated power analogous to that of the Arecibo radar, but coming from farther in the Milky Way. The existence in the Galaxy of potentially detectable Arecibo-like emitters can be reasonably ruled out only if all-sky surveys detect no such signals up to a radius of about 40 kly, an endeavor requiring detector sensitivities thousands times higher than those of current telescopes. Conversely, finding even one Arecibo-like signal within [Formula: see text] light years, a possibility within reach of current detectors, implies almost certainly that typically more than [Formula: see text] signals of comparable radiated power cross the Earth, yet to be discovered.
寻找假设中的银河文明的技术特征正在经历一个新的活跃阶段。首次,预计在可预见的未来,将对广阔的搜索空间的重要部分进行采样,这可能会提供有关可探测外星文明的丰富程度或缺乏的信息。从目前对银河系中非自然电磁信号的群体一无所知的情况出发,我们制定了一个贝叶斯统计模型,以推断穿越地球的无线电信号的平均数量,假设在未来对银河系的调查中要么没有检测到信号,要么检测到了信号。在相当非信息性的先验假设下,我们发现,在距地球约 1 kly 范围内未检测到信号,虽然表明缺乏银河系发射源,或者最多是稀缺的,但仍然与概率超过 10%的可能性一致,即通常超过[公式:请参见文本]的信号可能正在穿越地球,其辐射功率与阿雷西博雷达相当,但来自银河系的更远处。只有当全天空调查在约 40 kly 的半径内没有检测到任何此类信号时,才能合理地排除银河系中存在潜在可探测到的阿雷西博式发射器的可能性,而这项努力需要的探测器灵敏度比当前望远镜高数千倍。相反,即使在[公式:请参见文本]光年范围内发现一个阿雷西博式信号,这是当前探测器能够达到的可能性,也几乎可以肯定地表明,通常有超过[公式:请参见文本]个具有类似辐射功率的信号正在穿越地球,而这些信号尚未被发现。