Peng Yajing, Xiu Xianming, Zhu Gangbei, Yang Yanqiang
Department of Physics , Bohai University , Jinzhou 121013 , China.
Institute of Fluid Physics , Chinese Academy of Engineering Physics , Chengdu 610000 , China.
J Phys Chem A. 2018 Oct 25;122(42):8336-8343. doi: 10.1021/acs.jpca.8b06458. Epub 2018 Oct 15.
The lack of understanding of the initial decomposition micromechanism of energetic materials subjected to external stimulation has hindered its safe storage, usage, and development. The initial thermal decomposition path of nitrobenzene triggered by molecular thermal motion is investigated using temperature-dependent anti-Stokes Raman spectra experiments and first-principles calculations to clarify the initial thermal decomposition micromechanism. The experiment shows that the symmetric nitro stretching, antisymmetric nitro stretching, and phenyl ring stretching vibration modes are active as increasing temperature below 500 K. The DFT method is used to examine the effects of the three mode vibrations on the initial decomposition of nitrobenzene by relaxed scan for each relevant change in bond lengths and bond angles to obtain the optimal reaction channel leading to initial thermal decomposition of nitrobenzene. The results demonstrate that the initial thermal decomposition is the isomerization of nitrobenzene to phenyl nitrite. The optimal reaction channel leading to the initial isomerization is the increase or decrease of angle O-N-C from the antisymmetric nitro stretching vibration, which causes the torsion of nitro group and the subsequent oxygen atom attacking carbon atom. The scanning energy barrier related to angle O-N-C is about 62.1 kcal/mol, which is very consistent with the calculated activation barrier of isomerization of nitrobenzene. This proves the reliability of our conclusions.
对含能材料在外部刺激下初始分解微观机制的缺乏了解,阻碍了其安全储存、使用和发展。利用温度相关的反斯托克斯拉曼光谱实验和第一性原理计算,研究了由分子热运动引发的硝基苯的初始热分解路径,以阐明初始热分解微观机制。实验表明,在低于500 K的温度升高时,对称硝基伸缩振动、反对称硝基伸缩振动和苯环伸缩振动模式是活跃的。采用密度泛函理论(DFT)方法,通过对键长和键角的每一个相关变化进行松弛扫描,研究这三种振动模式对硝基苯初始分解的影响,以获得导致硝基苯初始热分解的最佳反应通道。结果表明,初始热分解是硝基苯异构化为亚硝酸苯酯。导致初始异构化的最佳反应通道是反对称硝基伸缩振动引起的O-N-C角的增大或减小,这导致硝基的扭转以及随后氧原子攻击碳原子。与O-N-C角相关的扫描能垒约为62.1 kcal/mol,这与计算得到的硝基苯异构化活化能垒非常一致。这证明了我们结论的可靠性。