Suppr超能文献

甲酸盐脱氢酶中动力学、隧道和动力学同位素效应的温度依赖性。

Temperature dependence of dynamic, tunnelling and kinetic isotope effects in formate dehydrogenase.

机构信息

Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.

Departament de Química Física, Universitat de València, 46100 Burjassot, Spain.

出版信息

Phys Chem Chem Phys. 2018 Oct 17;20(40):25722-25737. doi: 10.1039/c8cp04244f.

Abstract

The origin of the catalytic power of enzymes has been a question of debate for a long time. In this regard, the possible contribution of protein dynamics in enzymatic catalysis has become one of the most controversial topics. In the present work, the hydride transfer step in the formate dehydrogenase (FDH EC 1.2.1.2) enzyme is studied by means of molecular dynamic (MD) simulations with quantum mechanics/molecular mechanics (QM/MM) potentials in order to explore any correlation between dynamics, tunnelling effects and the rate constant. The temperature dependence of the kinetic isotope effects (KIEs), which is one of the few tests that can be studied by experiments and simulations to shed light on this debate, has been computed and the results have been compared with previous experimental data. The classical mechanical free energy barrier and the number of recrossing trajectories seem to be temperature-independent while the quantum vibrational corrections and the tunnelling effects are slightly temperature-dependent over the interval of 5-45 °C. The computed primary KIEs are in very good agreement with previous experimental data, being almost temperature-independent within the standard deviations. The modest dependence on the temperature is due to just the quantum vibrational correction contribution. These results, together with the analysis of the evolution of the collective variables such as the electrostatic potential or the electric field created by the protein on the key atoms involved in the reaction, confirm that while the protein is well preorganised, some changes take place along the reaction that favour the hydride transfer and the product release. Coordinates defining these movements are, in fact, part of the real reaction coordinate.

摘要

酶的催化能力的起源长期以来一直是争论的焦点。在这方面,蛋白质动力学在酶催化中的可能贡献已成为最具争议的话题之一。在本工作中,通过使用量子力学/分子力学(QM/MM)势的分子动力学(MD)模拟研究了甲酸脱氢酶(FDH EC 1.2.1.2)酶中的氢化物转移步骤,以探索动力学、隧道效应和速率常数之间的任何相关性。动力学同位素效应(KIE)的温度依赖性是可以通过实验和模拟研究来阐明这一争论的少数测试之一,已经进行了计算,并将结果与以前的实验数据进行了比较。经典力学自由能势垒和重越过轨迹的数量似乎与温度无关,而量子振动修正和隧道效应在 5-45°C 的温度范围内略有依赖性。计算出的主要 KIE 与以前的实验数据非常吻合,在标准偏差内几乎与温度无关。对温度的适度依赖性仅归因于量子振动修正贡献。这些结果,以及对静电势或蛋白质在反应中涉及的关键原子上产生的电场等集体变量的演变的分析,证实了尽管蛋白质已经很好地预组织,但在反应过程中会发生一些变化,有利于氢化物转移和产物释放。定义这些运动的坐标实际上是真实反应坐标的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验