Sahin Safa Onur, Kozat Suleyman Serdar
IEEE Trans Neural Netw Learn Syst. 2019 May;30(5):1452-1461. doi: 10.1109/TNNLS.2018.2869822. Epub 2018 Oct 1.
We investigate classification and regression for nonuniformly sampled variable length sequential data and introduce a novel long short-term memory (LSTM) architecture. In particular, we extend the classical LSTM network with additional time gates, which incorporate the time information as a nonlinear scaling factor on the conventional gates. We also provide forward-pass and backward-pass update equations for the proposed LSTM architecture. We show that our approach is superior to the classical LSTM architecture when there is correlation between time samples. In our experiments, we achieve significant performance gains with respect to the classical LSTM and phased-LSTM architectures. In this sense, the proposed LSTM architecture is highly appealing for the applications involving nonuniformly sampled sequential data.
我们研究了非均匀采样的可变长度序列数据的分类和回归问题,并引入了一种新颖的长短期记忆(LSTM)架构。具体而言,我们通过额外的时间门扩展了经典的LSTM网络,这些时间门将时间信息作为传统门的非线性缩放因子纳入其中。我们还为所提出的LSTM架构提供了前向传播和反向传播更新方程。我们表明,当时间样本之间存在相关性时,我们的方法优于经典的LSTM架构。在我们的实验中,相对于经典的LSTM和分阶段LSTM架构,我们实现了显著的性能提升。从这个意义上讲,所提出的LSTM架构对于涉及非均匀采样序列数据的应用极具吸引力。