Suppr超能文献

随机模型在生物学和癌症研究中的应用经验与展望。

Lessons and perspectives for applications of stochastic models in biological and cancer research.

作者信息

Sabino Alan U, Vasconcelos Miguel Fs, Sittoni Misaki Yamada, Lautenschlager Willian W, Queiroga Alexandre S, Morais Mauro Cc, Ramos Alexandre F

机构信息

Escola de Artes Ciências e Humanidades (EACH), Universidade de Sao Paulo, Sao Paulo, SP, BR.

Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR.

出版信息

Clinics (Sao Paulo). 2018 Sep 21;73(suppl 1):e536s. doi: 10.6061/clinics/2018/e536s.

Abstract

The effects of randomness, an unavoidable feature of intracellular environments, are observed at higher hierarchical levels of living matter organization, such as cells, tissues, and organisms. Additionally, the many compounds interacting as a well-orchestrated network of reactions increase the difficulties of assessing these systems using only experiments. This limitation indicates that elucidation of the dynamics of biological systems is a complex task that will benefit from the establishment of principles to help describe, categorize, and predict the behavior of these systems. The theoretical machinery already available, or ones to be discovered to help solve biological problems, might play an important role in these processes. Here, we demonstrate the application of theoretical tools by discussing some biological problems that we have approached mathematically: fluctuations in gene expression and cell proliferation in the context of loss of contact inhibition. We discuss the methods that have been employed to provide the reader with a biologically motivated phenomenological perspective of the use of theoretical methods. Finally, we end this review with a discussion of new research perspectives motivated by our results.

摘要

随机性作为细胞内环境不可避免的一个特征,其影响在生物组织的更高层次,如细胞、组织和生物体中都能观察到。此外,众多化合物作为一个精心编排的反应网络相互作用,增加了仅通过实验来评估这些系统的难度。这一局限性表明,阐明生物系统的动力学是一项复杂的任务,而建立有助于描述、分类和预测这些系统行为的原理将对此有所助益。现有的理论工具,或者有待发现的有助于解决生物学问题的工具,可能在这些过程中发挥重要作用。在此,我们通过讨论一些我们已用数学方法处理的生物学问题来展示理论工具的应用:接触抑制丧失情况下的基因表达波动和细胞增殖。我们讨论了所采用的方法,以便为读者提供一个从生物学角度出发对理论方法应用的现象学观点。最后,我们以对由我们的结果所激发的新研究视角的讨论来结束这篇综述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75c8/6131223/996e75ff2247/cln-73-536s-g001.jpg

相似文献

1
Lessons and perspectives for applications of stochastic models in biological and cancer research.
Clinics (Sao Paulo). 2018 Sep 21;73(suppl 1):e536s. doi: 10.6061/clinics/2018/e536s.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Morphogenesis of the tumor patterns.
Math Biosci Eng. 2008 Apr;5(2):299-313. doi: 10.3934/mbe.2008.5.299.
4
Increased entropy of signal transduction in the cancer metastasis phenotype.
BMC Syst Biol. 2010 Jul 30;4:104. doi: 10.1186/1752-0509-4-104.
5
Generalized principles of stochasticity can be used to control dynamic heterogeneity.
Phys Biol. 2012 Dec;9(6):065006. doi: 10.1088/1478-3975/9/6/065006. Epub 2012 Nov 29.
6
A stochastic model of oncogene expression and the relevance of this model to cancer therapy.
Theor Biol Med Model. 2006 Jan 31;3:5. doi: 10.1186/1742-4682-3-5.
7
Noise-induced cooperative behavior in a multicell system.
Bioinformatics. 2005 Jun 1;21(11):2722-9. doi: 10.1093/bioinformatics/bti392. Epub 2005 Mar 17.
8
Clinical Applications of Stochastic Dynamic Models of the Brain, Part II: A Review.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2017 Apr;2(3):225-234. doi: 10.1016/j.bpsc.2016.12.009. Epub 2017 Feb 10.
9
Stochastic gene expression stabilization as a new therapeutic strategy for cancer.
Bioessays. 2012 Mar;34(3):170-3. doi: 10.1002/bies.201100149. Epub 2012 Jan 10.
10
Space as the final frontier in stochastic simulations of biological systems.
FEBS Lett. 2005 Mar 21;579(8):1789-94. doi: 10.1016/j.febslet.2005.02.009.

本文引用的文献

2
Stochastic model of contact inhibition and the proliferation of melanoma in situ.
Sci Rep. 2017 Aug 14;7(1):8026. doi: 10.1038/s41598-017-07553-6.
3
Noisy Response to Antibiotic Stress Predicts Subsequent Single-Cell Survival in an Acidic Environment.
Cell Syst. 2017 Apr 26;4(4):393-403.e5. doi: 10.1016/j.cels.2017.03.001. Epub 2017 Mar 22.
4
5
[The enigma of the biological interpretation of the linear-quadratic model finally resolved? A summary for non-mathematicians].
Cancer Radiother. 2016 Jun;20(4):314-21. doi: 10.1016/j.canrad.2016.02.014. Epub 2016 Jun 21.
6
Stochastic model for gene transcription on Drosophila melanogaster embryos.
Phys Rev E. 2016 Feb;93(2):022403. doi: 10.1103/PhysRevE.93.022403. Epub 2016 Feb 2.
8
Natural variation of the expression pattern of the segmentation gene even-skipped in melanogaster.
Dev Biol. 2015 Sep 1;405(1):173-81. doi: 10.1016/j.ydbio.2015.06.019. Epub 2015 Jun 27.
9
Gene regulation and noise reduction by coupling of stochastic processes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):020701. doi: 10.1103/PhysRevE.91.020701. Epub 2015 Feb 26.
10
Classical mathematical models for description and prediction of experimental tumor growth.
PLoS Comput Biol. 2014 Aug 28;10(8):e1003800. doi: 10.1371/journal.pcbi.1003800. eCollection 2014 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验