Faculty of Medical Sciences, Department of Clinical Pathology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
J Neurochem. 2018 Dec;147(5):663-677. doi: 10.1111/jnc.14602. Epub 2018 Nov 26.
Among mitochondrial NADP-reducing enzymes, nicotinamide nucleotide transhydrogenase (NNT) establishes an elevated matrix NADPH/NADP by catalyzing the reduction of NADP at the expense of NADH oxidation coupled to inward proton translocation across the inner mitochondrial membrane. Here, we characterize NNT activity and mitochondrial redox balance in the brain using a congenic mouse model carrying the mutated Nnt gene from the C57BL/6J strain. The absence of NNT activity resulted in lower total NADPH sources activity in the brain mitochondria of young mice, an effect that was partially compensated in aged mice. Nonsynaptic mitochondria showed higher NNT activity than synaptic mitochondria. In the absence of NNT, an increased release of H O from mitochondria was observed when the metabolism of respiratory substrates occurred with restricted flux through relevant mitochondrial NADPH sources or when respiratory complex I was inhibited. In accordance, mitochondria from Nnt brains were unable to sustain NADP in its reduced state when energized in the absence of carbon substrates, an effect aggravated after H O bolus metabolism. These data indicate that the lack of NNT in brain mitochondria impairs peroxide detoxification, but peroxide detoxification can be partially counterbalanced by concurrent NADPH sources depending on substrate availability. Notably, only brain mitochondria from Nnt mice chronically fed a high-fat diet exhibited lower activity of the redox-sensitive aconitase, suggesting that brain mitochondrial redox balance requires NNT under the metabolic stress of a high-fat diet. Overall, the role of NNT in the brain mitochondria redox balance especially comes into play under mitochondrial respiratory defects or high-fat diet.
在线粒体 NADP 还原酶中,烟酰胺核苷酸转氢酶 (NNT) 通过催化 NADP 的还原,同时伴随着质子向内膜的转运,消耗 NADH 的氧化,从而建立了一个升高的基质 NADPH/NADP。在这里,我们使用携带来自 C57BL/6J 品系突变 Nnt 基因的同基因小鼠模型,对大脑中的 NNT 活性和线粒体氧化还原平衡进行了表征。NNT 活性的缺失导致年轻小鼠大脑线粒体中总 NADPH 来源活性降低,这一效应在老年小鼠中部分得到补偿。非突触线粒体的 NNT 活性高于突触线粒体。在 NNT 缺失的情况下,当呼吸底物的代谢受到相关线粒体 NADPH 来源通量限制或呼吸复合物 I 被抑制时,观察到从线粒体中释放的 H2O2 增加。因此,在没有碳底物供能的情况下,Nnt 大脑中的线粒体无法维持 NADP 的还原状态,当 H2O2 爆发代谢时,这种效应会加剧。这些数据表明,大脑线粒体中缺乏 NNT 会损害过氧化物的解毒,但过氧化物的解毒可以通过同时利用 NADPH 来源来部分代偿,这取决于底物的可用性。值得注意的是,只有长期高脂饮食喂养的 Nnt 小鼠的脑线粒体中氧化还原敏感的顺乌头酸酶活性较低,这表明在高脂肪饮食的代谢应激下,脑线粒体的氧化还原平衡需要 NNT。总的来说,NNT 在脑线粒体氧化还原平衡中的作用,特别是在线粒体呼吸缺陷或高脂肪饮食的情况下,会发挥作用。