School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
Skin Tumour Laboratory, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK.
Toxicol Lett. 2019 Mar 1;302:83-91. doi: 10.1016/j.toxlet.2018.09.016. Epub 2018 Sep 30.
Failure to predict drug-induced liver injury (DILI) remains a major contributing factor to lead compound drop-out during drug development. Xenopus embryos are amenable for early stage medium throughput small molecule screens and so have the potential to be used in pre-clinical screens. To begin to assess the usefulness and limitations of Xenopus embryos for safety assessment in the early phases of drug development, paracetamol was used as a model hepatotoxin. Paracetamol overdose is associated with acute liver injury. In mammals, the main mechanism of paracetamol-induced acute liver injury is an increased amount of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI) combined with a reduction of free glutathione (GSH). Humans that have taken an overdose of paracetamol are often treated with N-acetyl cysteine (NAC).
Xenopus laevis embryos were treated with up to 5 mM paracetamol from stage 38 to stage 45 during development, when the liver is functional. The presence of paracetamol-induced liver injury was assessed by: (1) microRNA-122 (miR-122) expression (a hepatic marker), (2) free GSH concentration (a marker of oxidative stress) and (3) NAC antioxidant intervention.
The amount of free GSH decreased significantly in embryos exposed to increasing paracetamol concentration. In embryos exposed to 5 mM paracetamol, 22.57 ± 4.25 nmol/mg GSH was detected compared to 47.11 ± 7.31 nmol/mg untreated embryos (mean ± SEM). In tail tissue, miRNA-122 expression increased 6.3-fold with 3 mM paracetamol concentration treatment compared to untreated embryos. NAC treatment altered the free GSH decline for embryos treated with up to 5 mM. Embryos exposed to 1 mM paracetamol and then exposed to 0.5 mM NAC 24 h prior to harvest, had a significantly higher amount of GSH compared to embryos that were only exposed to 1 mM paracetamol (mean ± SEM; 97.1 ± 9.6 nmol/mg and 54.5 ± 6.6 nmol/mg respectively).
Xenopus laevis embryos exhibit similar characteristics of paracetamol-induced liver injury observed in mammalian models. These data indicate that the Xenopus embryo could be a useful in vivo model to assess DILI and aid lead compound prioritisation during the early phase of drug development, in combination with pre-clinical in vitro studies. Consequently, the Xenopus embryo could contribute to the reduction principle as defined by the National Centre for the Replacement, Refinement and Reduction of Animals in Research.
未能预测药物性肝损伤(DILI)仍然是药物开发过程中导致先导化合物淘汰的主要因素。非洲爪蟾胚胎适用于早期高通量小分子筛选,因此有可能用于临床前筛选。为了开始评估非洲爪蟾胚胎在药物开发早期阶段用于安全性评估的有用性和局限性,使用对乙酰氨基酚作为模型肝毒素。对乙酰氨基酚过量与急性肝损伤有关。在哺乳动物中,对乙酰氨基酚诱导的急性肝损伤的主要机制是增加活性代谢物 N-乙酰-p-苯醌亚胺(NAPQI)的量,同时降低游离谷胱甘肽(GSH)的量。服用对乙酰氨基酚过量的人通常用 N-乙酰半胱氨酸(NAC)治疗。
在发育过程中,从第 38 期到第 45 期,非洲爪蟾胚胎接受高达 5 mM 的对乙酰氨基酚处理,此时肝脏具有功能。通过以下方法评估对乙酰氨基酚诱导的肝损伤的存在:(1)微 RNA-122(miR-122)表达(肝标志物),(2)游离 GSH 浓度(氧化应激标志物)和(3)NAC 抗氧化剂干预。
暴露于增加的对乙酰氨基酚浓度的胚胎中,游离 GSH 的量显著减少。在暴露于 5 mM 对乙酰氨基酚的胚胎中,检测到 22.57 ± 4.25 nmol/mg GSH,而未处理的胚胎为 47.11 ± 7.31 nmol/mg(平均值 ± SEM)。在尾巴组织中,与未处理的胚胎相比,用 3 mM 对乙酰氨基酚浓度处理的胚胎中 miR-122 的表达增加了 6.3 倍。NAC 处理改变了暴露于高达 5 mM 对乙酰氨基酚的胚胎中游离 GSH 的下降。与仅暴露于 1 mM 对乙酰氨基酚的胚胎相比,在收获前 24 小时暴露于 1 mM 对乙酰氨基酚然后暴露于 0.5 mM NAC 的胚胎中,GSH 的量显著更高(平均值 ± SEM;分别为 97.1 ± 9.6 nmol/mg 和 54.5 ± 6.6 nmol/mg)。
非洲爪蟾胚胎表现出与哺乳动物模型中观察到的对乙酰氨基酚诱导的肝损伤相似的特征。这些数据表明,非洲爪蟾胚胎可能是一种有用的体内模型,可用于评估 DILI,并在药物开发的早期阶段与临床前体外研究相结合,帮助优先考虑先导化合物。因此,非洲爪蟾胚胎可以为国家替代、改良和减少动物在研究中的作用原则做出贡献。