Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China.
ACS Appl Mater Interfaces. 2018 Nov 21;10(46):39645-39650. doi: 10.1021/acsami.8b12610. Epub 2018 Nov 12.
All-solid-state sodium ion batteries (ASIBs) based on sulfide electrolytes are considered a promising candidate for large-scale energy storage. However, the limited cycle life of ASIBs largely restricts their practical application. Cycling-stable ASIBs can be achieved only if the designed cathode can simultaneously address challenges including insufficient interfacial contact, electrochemical and chemical instability between the electrode and electrolyte, and strain/stress during operation , rather than just addressing one or part of these challenges. Chevrel phase MoS has inherent high electronic conductivity and small volume change during sodiation/desodiation, and is chemically and electrochemically stable with the sulfide electrolyte, and therefore the only challenge of using MoS as the cathode for ASIBs is the insufficient contact between MoS and the solid electrolyte (SE). Herein, a thin layer of SE is coated on MoS using a solution method to achieve an intimate contact between MoS and the SE. Such a SE-coated MoS cathode enabled an ASIB with a high cycling performance (500 cycles), even much better than that of the liquid-electrolyte batteries with the MoS cathode. This work provides valuable insights for developing long-cycle life ASIBs.
全固态钠离子电池(ASIBs)基于硫化物电解质,被认为是大规模储能的有前途的候选者。然而,ASIBs 的循环寿命有限,在很大程度上限制了它们的实际应用。只有当设计的阴极能够同时解决包括电极与电解质之间的界面接触不足、电化学和化学不稳定性以及在操作过程中的应变/应力等挑战,而不仅仅是解决这些挑战中的一个或部分挑战,才能实现循环稳定的 ASIBs。 Chevrel 相 MoS 在钠化/去钠化过程中具有固有高的电子导电性和小的体积变化,并且与硫化物电解质具有化学和电化学稳定性,因此将 MoS 用作 ASIBs 的阴极的唯一挑战是 MoS 与固体电解质(SE)之间的接触不足。在此,使用溶液法在 MoS 上涂覆一层薄的 SE,以实现 MoS 与 SE 的紧密接触。这种涂覆 SE 的 MoS 阴极使 ASIB 具有高的循环性能(500 次循环),甚至优于具有 MoS 阴极的液体电解质电池。这项工作为开发长循环寿命 ASIBs 提供了有价值的见解。