Suppr超能文献

基于第一性原理的单离子热力学:利用从头算量子力学/分子力学分子动力学模拟计算水溶液中Li的绝对水合自由能和单电极电势

Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li Using ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations.

作者信息

Prasetyo Niko, Hünenberger Philippe H, Hofer Thomas S

机构信息

Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria.

Austria-Indonesia Centre (AIC) for Computational Chemistry , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia.

出版信息

J Chem Theory Comput. 2018 Dec 11;14(12):6443-6459. doi: 10.1021/acs.jctc.8b00729. Epub 2018 Nov 12.

Abstract

A recently proposed thermodynamic integration (TI) approach formulated in the framework of quantum mechanical/molecular mechanical molecular dynamics (QM/MM MD) simulations is applied to study the structure, dynamics, and absolute intrinsic hydration free energy Δ G of the Li ion at a correlated ab initio level of theory. Based on the results, standard values (298.15 K, ideal gas at 1 bar, ideal solute at 1 molal) for the absolute intrinsic hydration free energy [Formula: see text] of the proton, the surface electric potential jump χ upon entering bulk water, and the absolute single-electrode potential [Formula: see text] of the reference hydrogen electrode are calculated to be -1099.9 ± 4.2 kJ·mol, 0.13 ± 0.08 V, and 4.28 ± 0.04 V, respectively, in excellent agreement with the standard values recommended by Hünenberger and Reif on the basis of an extensive evaluation of the available experimental data (-1100 ± 5 kJ·mol, 0.13 ± 0.10 V, and 4.28 ± 0.13 V). The simulation results for Li are also compared to those for Na and K from a previous study in terms of relative hydration free energies ΔΔ G and relative electrode potentials [Formula: see text]. The calculated values are found to agree extremely well with the experimental differences in standard conventional hydration free energies ΔΔ G and redox potentials [Formula: see text]. The level of agreement between simulation and experiment, which is quantitative within error bars, underlines the substantial accuracy improvement achieved by applying a highly demanding QM/MM approach at the resolution-of-identity second-order Møller-Plesset perturbation (RIMP2) level over calculations relying on purely molecular mechanical or density functional theory (DFT) descriptions. A detailed analysis of the structural and dynamical properties of the Li hydrate indicates that a correct description of the solvation structure and dynamics is achieved as well at this level of theory. Consideration of the QM/MM potential-energy components also shows that the partitioning into QM and MM zones does not induce any significant energetic artifact for the system considered.

摘要

一种最近提出的、在量子力学/分子力学分子动力学(QM/MM MD)模拟框架下制定的热力学积分(TI)方法,被应用于在相关的从头算理论水平上研究锂离子的结构、动力学和绝对固有水合自由能ΔG。基于这些结果,质子的绝对固有水合自由能[公式:见原文]、进入 bulk 水时的表面电势跃变χ以及参比氢电极的绝对单电极电势[公式:见原文]的标准值(298.15 K,1 bar 下的理想气体,1 molal 下的理想溶质)分别计算为-1099.9±4.2 kJ·mol、0.13±0.08 V 和 4.28±0.04 V,与 Hünenberger 和 Reif 根据对现有实验数据的广泛评估所推荐的标准值(-1100±5 kJ·mol、0.13±0.10 V 和 4.28±0.13 V)非常吻合。Li 的模拟结果也与先前研究中 Na 和 K 的模拟结果在相对水合自由能ΔΔG 和相对电极电势[公式:见原文]方面进行了比较。计算值被发现与标准常规水合自由能ΔΔG 和氧化还原电势[公式:见原文]的实验差异极其吻合。模拟与实验之间的吻合程度在误差范围内是定量的,这突出了通过在恒等式二阶 Møller-Plesset 微扰(RIMP2)水平上应用要求很高的 QM/MM 方法相对于依赖纯粹分子力学或密度泛函理论(DFT)描述的计算所实现的显著精度提升。对 Li 水合物的结构和动力学性质的详细分析表明,在这个理论水平上也实现了对溶剂化结构和动力学的正确描述。对 QM/MM 势能分量的考虑还表明,对于所考虑的系统,划分为 QM 和 MM 区域不会引起任何显著的能量伪影。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验