Suppr超能文献

硅锗和锗硅核壳纳米线的结构特性

Structural properties of silicon-germanium and germanium-silicon core-shell nanowires.

作者信息

O'Rourke Conn, Mujahed Shereif Y, Kumarasinghe Chathurangi, Miyazaki Tsuyoshi, Bowler David R

机构信息

London Centre for Nanotechnology, University College London, 17-19 Gordon St, London, WC1H 0AH, United Kingdom. International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

出版信息

J Phys Condens Matter. 2018 Nov 21;30(46):465303. doi: 10.1088/1361-648X/aae617. Epub 2018 Oct 4.

Abstract

Core-shell nanowires made of Si and Ge can be grown experimentally with excellent control for different sizes of both core and shell. We have studied the structural properties of Si/Ge and Ge/Si core-shell nanowires aligned along the [Formula: see text] direction, with diameters up to 10.2 nm and varying core to shell ratios, using linear scaling density functional theory. We show that Vegard's law, which is often used to predict the axial lattice constant, can lead to an error of up to 1%, underlining the need for a detailed ab initio atomistic treatment of the nanowire structure. We analyse the character of the intrinsic strain distribution and show that, regardless of the composition or bond direction, the Si core or shell always expands. In contrast, the strain patterns in the Ge shell or core are highly sensitive to the location, composition and bond direction. The highest strains are found at heterojunction interfaces and the surfaces of the nanowires. This detailed understanding of the atomistic structure and strain paves the way for studies of the electronic properties of core-shell nanowires and investigations of doping and structure defects.

摘要

由硅和锗制成的核壳纳米线可以通过实验生长,对核和壳的不同尺寸都能实现极佳的控制。我们使用线性缩放密度泛函理论,研究了沿[公式:见正文]方向排列、直径达10.2纳米且核壳比不同的硅/锗和锗/硅核壳纳米线的结构特性。我们表明,常用于预测轴向晶格常数的维加德定律可能导致高达1%的误差,这突出了对纳米线结构进行详细的从头算原子处理的必要性。我们分析了本征应变分布的特征,并表明,无论组成或键方向如何,硅核或壳总是膨胀的。相比之下,锗壳或核中的应变模式对位置、组成和键方向高度敏感。最高应变出现在异质结界面和纳米线表面。对原子结构和应变的这种详细理解为研究核壳纳米线的电子特性以及掺杂和结构缺陷的研究铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验